
The 12th International Days of Statistics and Economics, Prague, September 6-8, 2018 

1091 

 

ANALYSIS OF SUCCESS RATE OF THE CHF COEFFICIENT 

IN DIFFERENT CONDITIONS 

Tomáš Löster   

 

Abstract 

The aim of this paper is to analyse CHF coefficient, which is used for finding the number of 

clusters in cluster analysis, in different conditions.  In current literature there are many 

methods and many distances measures, which can be used to classification of objects into 

clusters. In this paper were used different methods (Nearest neighbour, Farthest neighbour, 

Centroid method, Average distance, Ward’s method) in combination with two selected 

distance measures (Euclidean and Mahalanobis). On the basis of the analyzes it can be stated 

that if the clusters are overlaped, the ability of the CHF coefficient is lower than in the case of 

well separated clusters. Success rate was in all cases lower than 60%. The best results are 

always achieved using the Farthest neighbor method. For the 1st group of files, this it was 

48%, respectively, 59 % when was used Euclidean, respectively, Mahalanobis distance 

measure. For group of files No. 2, the success rate was 46 % resp. 56 %, using Euclidean, 

respectively, Mahalanobis distance measure. From the above conclusions, it is clear that better 

results are achieved (in case that 10 % of clusters areas are overlaped) when using the 

Mahalanobis distance. To compare the probability distribution, better results are obtained in 

the situation where the variables come from a normal probability distribution. 
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Introduction 

Cluster analysis is multivariate method which objective is to classify the objects into groups 

called clusters. It is very often used statistical method, see e.g. (Halkidi et al., 2001; Kogan, J., 

2007; Řezanková et al., 2013). In practical tasks which are dealing with the classification of 

objects is crucial for selecting the right multivariate classification methods if they are priory 

known or unknown the affiliations of the objects into clusters. Objects may be customers, 
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patients, clients, documents, etc. Authors of papers very often used for example wages to 

describe regions. The problem of wages and poverty is described e.g. in (Bílková, 2012; 

Marek, 2013). Other demographic variables, which are very often used in cluster analysis, are 

described in (Megyesiova, et al. 2011). 

In case that objects have known assignment into groups, for classification is used the 

discriminant analysis. Second situation, i.e. when the classification of the objects is not known 

in advance is solved by cluster analysis. There are many methods which can be used in 

current literature.  

Key role in cluster analysis play the similarity characteristics, resp. distances measures. Also 

in this case, the variable type, which characterizes each object, is very important. In case of 

quantitative variables the distance measures are used. There are many distance measures 

between objects, which can be used. Various combinations of clustering methods and distance 

measure provide  different results. In the current literature there are a numbers of comparative 

studies that seek to evaluate various combinations of clustering methods and measure 

distances in a different conditions. However, there is not a clear rule how to choose best 

combination in different situations. Although they are indicated for instance situations in 

which different distance measures are unsuitable (for example in case of a strong correlation 

between the input variables), but the actual effect of breaking of this assumption is usually not 

analyzed. In the same way the advantages and disadvantages of different clustering algorithms 

are indicated. 

The aim of the paper is to analyse CHF coefficient, which is used for finding number of 

clusters, in different conditions.  

 

1 Clustering methods 

The aim of cluster analysis is the classification of objects, see (Gan et al., 2007). There 

are various methods and procedures to do that. These methods and procedures can be 

categorized according to various criteria see e.g. (Gan et al., 2007; Řezanková et al., 2009; 

Stankovičová et al., 2007). Mostly they are divided on traditional methods and new 

approaches in the literature. Traditional methods are well developed and they are applied in 

many software products.  

In current literature there are numbers of clustering algorithms, which are 

implemented to many specialized software products, see (Meloun et al., 2005). Application of 
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various methods of clustering on same objects described by identical properties can produce 

different results. As stated by Gan et al. (2007) and Halkidi (2001) “It cannot be a priori said 

which method is the best for a given problem. Usually, the method of the nearest neighbour is 

the least suitable and method of average distance or Ward’s method suits in many cases the 

best”. Among the methods of hierarchical clustering can be included, for example, the nearest 

neighbour method, method of the farthest neighbour, method of the average distance, centroid 

method. 

Nearest neighbour method it is the oldest and the simplest method. There are searched two 

objects, between which the distance is the shortest and they are joined to the cluster. Another 

cluster is created by linking the third closest object. Distance between two clusters is defined 

as the shortest distance of any point in cluster in relation to any point in another cluster, see 

Gan et al. (2007). As one of crucial disadvantage of this methods is stated that occurs so-

called chaining, when two objects, which are the closest in relation to each other, but not in 

relation to majority of other objects, are sorted to one cluster. 

Farthest neighbour method is based on the opposite principle than the method of the nearest 

neighbour. The advantage of this method is that it creates small, compact and clearly 

separated clusters. Contrary to the nearest neighbour method there is no problem with 

clusters’ chaining. 

Use of the method of average distance, the criterion for emerge of the clusters represents the 

average distance of all objects in one cluster to all objects located in second cluster. Results of 

this method are not influenced by extreme values as in the case of method of the nearest and 

furthers neighbour. Emerge of the cluster is dependent on all objects of clusters.  

Centroid method was firstly used by Sokal and Michener under name “weighted group 

method“. This method does not use between-cluster distances of the objects. To new cluster 

those two clusters are merged, between what is minimal distance of their centroids, while the 

centroid is understood as an average of the variables in particular clusters. The advantage of 

this method is that it is not that significantly influenced by remote objects.  

Ward’s method solves the clustering procedure differently than above stated methods that are 

optimizing the distances between particular clusters. Method minimizes the heterogeneity of 

clusters, i.e. clusters are formed using maximization of intragroup homogeneity. As the 
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measure of homogeneity of clusters is understood intragroup sum of squares of the deviations 

of values from the average of the clusters and it is called Ward’s criterion. Criterion for 

linking the clusters is based on the idea that in each step of clustering there is minimal 

increment of Ward’s criterion. Ward’s method has tendency to remove small clusters and 

create clusters of approximately same size. 

Detailed description of these methods can be found, for example, in (Gan, 2007) 

Besides the clustering methods themselves and important (key) role is played also by 

the measures of dissimilarity. Similarity is used as the criterion for the creation of clusters. 

Measurement of the similarity of objects when they are characterized by quantitative variables 

is based on the distances of the objects. Transformation of the distance measures to similarity 

(dissimilarity) measures is done according to simple rules. Very important are the measures of 

similarities, resp. the distance levels. There are a number of distance levels and in the practice 

they are combined with various clustering methods, see e.g. (Gan et al., 2007; Řezanková et 

al. 2009). For measurement of the distances are frequently used: 

Euclidean distance represent the length of hypotenuse of a rectangular triangle. Calculation of 

this measure is based on Pythagoras theorem. Mahalanobis distance diminishes the problem 

while using non-standardized data that can cause differences among clusters due to different 

measurement units. This measure is usable in the case when all the variables characterizing 

the objects are mutually correlated.  

Detailed descriptions of methods and formulas of particular distance measures can be found 

e.g. in (Řezanková et. al., 2009) or (Gan, et. al., 2007). 

CHF index (also the pseudo F index) was designed by the authors Calinski and Habarasz, see 

(Calinski and Habarasz, 1974). The CHF index is used for finding number of clusters and is 

defined as the ratio of the average between cluster variability and average within cluster 

variability. This coefficient represents the F-test analogy used in the analysis of variance. It 

can be used to determine the optimal number of clusters. High values of this coefficient 

indicate well-separated clusters, i.e., when determining the optimum number of clusters, the 

maximum value of this index is searched within a predetermined number of clusters.  

Detailed descriptions and formulas of this coefficient can be found e.g. in (Calinski et. al., 

1974) or (Gan, et. al., 2007). 



The 12th International Days of Statistics and Economics, Prague, September 6-8, 2018 

1095 

 

2 Groups of files 

In order to analyze the behavior of the CHF coefficient, a total of two groups of data files 

were generated using the random number generator. In both groups, there are always 

hundreds of files with where generated in the same conditions. In each file, there are always 

three clusters of the same number of thousands of objects. In the first group of files, objects 

are characterized by two variables that were generated from normal probability distribution. 

In the second group, there are objects which are characterized by two variables that are 

uniformed distributed. For both sets of files, the generated clusters overlap. The overlapping 

area of clusters is 10 % in both groups of files.  

For these two groups, the above-mentioned clustering methods were applied, both distance 

measures and the number of clusters was founded using the CHF coefficient. The results for 

both groups are compared. Each success rate of CHF for a given combination was determined 

as a proportion of the number of files that were just 3 clusters founded and the total number of 

files in that group, which was in both cases one hundred. 

 

Table 1 contains the clustering results when using the Euclidean distance measure in 

clustering of files in group No. 1. 

 

Tab. 1: Success rate of CHF coefficient (in %), group 1 (Euclidean distance) 

Methods Success 

Nearest neighbour 5,00 

Farthest neighbour 48,00 

Centroid method 35,00 

Average distance 37,00 

Ward’s method 42,00 

Source: our calculations 

 

Table 1 shows that the highest success rate was achieved using the Farthes neighbor method. 
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Table 2 shows the clutering results when was usede the Mahalanobis distance measure at 

group No. 1. 

 

Tab. 2: Success rate of CHF coefficient (in %), group 1 (Mahalanobis distance) 

Methods Success 

Nearest neighbour 6,00 

Farthest neighbour 59,00 

Centroid method 27,00 

Average distance 50,00 

Ward’s method 39,00 

Source: our calculations 

 

As can be seen from table 2, the highest success rate was achieved again using the farthest 

neighbor method. 

 

Tab. 3: Difference in CHF coefficient success (in %), Group 1 (Euclidean - Mahalanobis 

distance) 

Methods Success 

Nearest neighbour -1,00 

Farthest neighbour -11,00 

Centroid method 8,00 

Average distance -13,00 

Ward’s method 3,00 

Source: our calculations 

 

Table 3 shows the differences in CHF success rates between both distances. These values 

were determined as the difference between the Euclidean and Mahalanobis distances. 

Obviously, in most cases, better results have been achieved in using of the Mahalanobis 

distance. The highest difference was achieved in the average distance method, where the 

difference was 13 %. 

 

Table 4 shows the resulst of clustering when was the Euclidean distance measure used in 

clustering of files from  group No. 2.  
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Tab. 4: Success rate of CHF coefficient (in %), group 2 (Euclidean distance) 

Methods Success 

Nearest neighbour 7,00 

Farthest neighbour 46,00 

Centroid method 26,00 

Average distance 34,00 

Ward’s method 28,00 

Source: our calculations 

 

As can be seen from the values in Table 4, the highest success rate of the CHF coefficient was 

again achieved using the most Farthest neighbor method. This success rate is 46 %. 

 

Table 5 shows the clustering results when using the Mahalanobis distance measure in files 

from group No. 2.  

 

Tab. 5: Success rate of CHF coefficient (in %), group 2 (Mahalanobis distance) 

Methods Success 

Nearest neighbour 12,00 

Farthest neighbour 56,00 

Centroid method 26,00 

Average distance 44,00 

Ward’s method 30,00 

Source: our calculations 

 

From the values in table 5, it follows that, using the Mahalanobis distance, the highest success 

rate was achieved again using the most Farthest neighbor method. 

 

Tab. 6: Difference in success rate of CHF coefficient (in %), Group 2 (Euclidean - 

Mahalanobis distance) 

Methods Success 

Nearest neighbour -5,00 

Farthest neighbour -10,00 

Centroid method 0,00 

Average distance -10,00 

Ward’s method -2,00 

Source: our calculations 
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Table 6 shows the differences in success rates for both distance measures. The highest 

difference is achieved with the Farthes neighbor method and the average distance method. It 

can be stated that better results are achieved in using of the Mahalanobis distance. 

 

Tables 7 and 8 shows the comparison of the success rate of the CHF coefficient for the two 

groups of sets (different probability distributions). Table 7 shows the results using the 

Euclidean distance, in Table 8 there are results for using the Mahalanobis distance. Values are 

always calculated as the success rate of the CHF coefficient for group 1 - success rate for 

group 2. 

 

Tab. 7: Comparison of results (in%), groups 1 and 2, Euclidean distance 

Methods Success 

Nearest neighbour -2,00 

Farthest neighbour 2,00 

Centroid method 9,00 

Average distance 3,00 

Ward’s method 14,00 

Source: our calculations 

 

Table 7 shows that higher results of success rate were obtained when the variables are 

generated from a normal probability distribution. 

 

Tab. 8: Comparison of results (in%), groups 1 and 2, Mahalanobis distance 

Methods Success 

Nearest neighbour -6,00 

Farthest neighbour 3,00 

Centroid method 1,00 

Average distance 6,00 

Ward’s method 9,00 

Source: our calculations 

 

Table 8 shows that the higher success rates in using of the Mahalanobis distance were again 

achieved in situation, that the variables are generated from a normal probability distribution. 
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Conclusion 

The aim of this article was to analyze the behavior of the CHF coefficient on two groups of 

files. Both groups are artificially generated files, of which the first set of files is generated 

from a normal probability distribution, the second group is uniformed distributed. A total of 

five clustering methods were applied to both groups and two distance measure were used. In 

both groups of files, there are always three clusters that are overlapping. 10 % of clusters area 

are overlapped in all data sets. In each of clusters there is a thousand objects. 

On the basis of the analyses can be stated that in situation of overlapped clusters success rate 

of the CHF coefficient is lower than in the case of well separated clusters. Success rate in all 

cases is lower than 60%. The best results are always achieved using the Farthest neighbor 

method. For the 1st group of files, this is 48 %, respectively 59 % when was used Euklidean, 

respectively, Mahalanobis distance measure. For group No. 2, the success rate was 46 % resp. 

56 % in using Euclidean, respectively, Mahalanobis distance measure. From the above 

conclusions, it is clear that better results are achieved, in case of overlapped clusters, in used 

of the Mahalanobis distance measure. To compare the probability distribution, better results 

are obtained in a situation where the variables come from a normal probability distribution. 
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