AN APPLICATION OF PRINCIPAL COMPONENT ANALYSIS TO INTERNATIONAL COMPARISON OF ECONOMIC ACTIVITIES

Alexei Verenikin – Anna Verenikina

Abstract

There is an acute need for a suitable composite measure of national economic performance insensitive to subjective preferences of different attributes of a multidimensional social pattern. The question is how to aggregate partial measures using appropriate weighting coefficients that will not rely on subjective judgments concerning their relative significance. In line with a number of studies we propose a rather simple but comprehensive approach based on principal component analysis widely used in multidimensional statistics. Though the first principal component or the set of principal components are known to be used as an aggregate economic indicator, this approach usually implies significant loss in variance of initial factors. However, we argue that the problem has a rather straightforward solution. The whole set of principal components weighted by the corresponding proportions of explained variance can serve as a universal "natural" aggregate measure of various types of economic activities. The proposed methodology is applied to evaluate the national competitiveness and to build the corresponding ranking of the countries in Eurasian region.

Key words: principal component analysis, international competitiveness, country ranking

JEL Code: C01, F00

Introduction and literature review

Nowadays competitiveness is one of the most frequently analyzed economic category. There is no unique approach to qualification and measurement of this complex notion (Aiginger, 2006). National competitiveness is determined mainly by: a country's ability to achieve high sustainable economic growth rates; the level of factors' productivity; the ability of national companies to compete successfully in international and domestic markets.

Competitiveness can be considered at micro and macro level. Competitiveness at the micro level can be traced by dynamics of market share, technological advances and quality of output. Competitiveness at the macro level integrates economic growth, quality of life and aggregate productivity.

The 12th International Days of Statistics and Economics, Prague, September 6-8, 2018

M. Porter's idea (1998) that macroeconomic efficiency is the basis of national competitiveness can be regarded as the origin of Global Competitiveness Index (GCI) by World Economic Forum (WEF).

WEF analysis is based on 12 factors of productivity (pillars). National competitiveness is ranked according to overall economic performance (social and international relations), the role of state and institutional framework. World Economic Forum identifies such factors as institutions, infrastructure, financial, technology, labor and macroeconomic situation as key elements of national competitiveness.

National economic performance is a multidimensional characteristic that comprises a variety of indicators reflecting different social processes and phenomena. In order to compare the results achieved by different countries one has to construct a kind of a composite indicator aggregating specific measures of a variety of social patterns. Despite of a huge set of studies and a continuous discussion still there remains a need for a suitable measure that will not be sensitive to subjective preferences concerning the relative significance of specific social and economic features. The question is how to aggregate partial measures using appropriate weighting coefficients that will not rely on subjective judgments.

In line with a number of studies that try to avoid any references to expert assessments in the choice of the weighting coefficients in construction of a composite indicator (see, for instance, (Barrington-Leigh and Escande, 2018), (Pérez-Moreno, Rodríguez and Luque, 2016), (Poledníková and Melecký, 2017), (Thore and Tarverdyan, 2016)) we propose a rather simple but comprehensive approach based on principal component analysis widely used in multidimensional statistics.

We use principal component analysis (PCA) which is a common statistical technique employed to reduce a larger set of correlated variables into a smaller set of uncorrelated variables (principal components) that account for most of the variation in the original dataset.

Application of principal component analysis to index numbers design has a rather long history. The typical motivation was to evaluate a general level of economic activity (Peters and Butler, 1970) and to obtain a universal measure of economic activity – a kind of genuine quality of life index – that will avoid the shortcomings of per capita GNP (Ram, 1982).

Nowadays PCA is broadly used in construction of regional and national competitiveness rankings. The essence of this approach can be found in (Aivazian and Mkhitarian, 2001), (Aivazian et al., 2006). The authors use the first principal component as an aggregate indicator of economic performance. This approach is characterized by transparent and accurate methodology that is based solely on statistical data, excludes any expert estimates

and guarantees reliability of the resulting indicators. A variation of this methodology with an intention to incorporate an information transfer approach is given by (Zhgun, 2017).

Unfortunately the first principal component is not an appropriate measure in a typical situation when the proportion of total factors' variance explained by the first principal component is not sufficiently large. In this case one may use a number of the first principal components which together explain a major part of the factors' variance and apply either expert assessments or implicitly the shares of explained variance as weighting coefficients. Still this approach usually implies significant loss in variance of initial factors that is taken into consideration.

Methodology, data and analysis

Principal component analysis is designed to reduce the dimension of variable space that characterizes a statistical object. Principal components form an orthogonal normalized system of linear combinations of original statistical variables that retains their total variation. Principal components are ranked in accordance with the share of comprised variance of the available data. Let $X = \{x_i\}_{i=1}^n$ be a vector of *n* original variables that characterize economic performance of a number (*m*) of countries $(x_i = \{x_{ij}\}_{j=1}^m)$. Thus primary data forms a matrix

$$X = \begin{pmatrix} x_{11} & \cdots & x_{1m} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nm} \end{pmatrix}.$$
 Denote by $\Sigma = \begin{pmatrix} \sigma_{11} & \cdots & \sigma_{1n} \\ \vdots & \ddots & \vdots \\ \sigma_{n1} & \cdots & \sigma_{nn} \end{pmatrix}$ the corresponding covariance matrix.

Note that the covariate matrix is invariant with respect to a fixed shift of primary data. So further on we consider centered data vectors: $Ex_i = 0$, i = 1, ..., n. Total variation of primary variables is given by trace of the covariance matrix $tr\Sigma$.

Denote by $l_k = \{l_{ki}\}_{i=1}^n$ the normalized vector of k-th component loadings $(l_k l_k^T = 1)$ and by $z_{kj} = \sum_{i=1}^n l_{ki} x_{ij}$ – the k-th component score for the *j*-th country. Principal component

loadings form the matrix $L = \begin{pmatrix} l_{11} & \cdots & l_{1n} \\ \vdots & \ddots & \vdots \\ l_{n1} & \cdots & l_{nn} \end{pmatrix}$ of linear transformation of initial data into

principal component scores: $Z = \begin{pmatrix} Z_1 \\ \vdots \\ Z_n \end{pmatrix} = \begin{pmatrix} z_{11} & \cdots & z_{1m} \\ \vdots & \ddots & \vdots \\ z_{n1} & \cdots & z_{nm} \end{pmatrix} = LX$, where $Z_k = (z_{k1}, \dots, z_{km})$ is the

k-th principal component vector.

The 12th International Days of Statistics and Economics, Prague, September 6-8, 2018

Thus, the first principal component vector $Z_1 = (z_{11}, ..., z_{1m})$ solves the problem (Aivazian and Mkhitarian, 2001):

$$DZ_1 = D(l_1X) = l_1 \Sigma l_1^T \longrightarrow \max_{l_1}$$

s.t. $l_1 l_1^T = 1;$

where $D(\cdot)$ denotes the variance of component scores. Here we take into consideration that the variables X are centered and $E(XX^T) = \Sigma$, thus $E(l_1X)^2 = E(l_1XX^Tl_1^T) = l_1\Sigma l_1^T$.

To solve the problem form Lagrange function $L_1 = l_1 \Sigma l_1^T - \lambda (l_1 l_1^T - 1)$, take its derivative with respect to l_1 , and put it equal to zero: $\frac{\partial L_1}{\partial l_1} = 2\Sigma l_1^T - 2\lambda l_1^T = 2(\Sigma - \lambda I)l_1^T = 0$.

The first principal component loadings are an eigenvector of the covariance matrix:

$$\left(\Sigma - \lambda I\right) l_1^T = 0. \tag{1}$$

To solve equation (1) one has to use specific values of λ that are given by the characteristic equation of the matrix Σ :

$$\left|\Sigma - \lambda I\right| = 0. \tag{2}$$

Multiply l_1 by (1) to get

$$DZ_1 = D(l_1X) = l_1 \Sigma l_1^T = \lambda_1.$$
(3)

The covariance $(n \times n)$ matrix is symmetrical and positive definite, so equation (2) has n real-valued nonnegative roots $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n \ge 0$ (characteristic roots, or eigenvalues of the matrix Σ). Thus the first principal components loadings are determined as the eigenvector that corresponds to the largest eigenvalue of the covariance matrix Σ . The following principal components $Z_k = (z_{k1},...,z_{km}), k = 2,...,n$, use the other eigenvectors that correspond to successively smaller eigenvalues as the component loadings:

$$DZ_{k} = D(l_{k}X) = l_{k}\Sigma l_{k}^{T} = \lambda_{k}, \quad k = 2, \dots, n.$$

$$\tag{4}$$

Thus, principal component loadings are determined as eigenvectors of the covariance matrix Σ . The eigenvalues $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n \ge 0$ of the matrix Σ are equal to the variance of the corresponding principal component scores $Z_1, Z_2, ..., Z_n$, where $Z_k = (z_{k1}, ..., z_{km})$ is the *k*-th principal component vector, k = 1, ..., n.

Note that often number of principal components that correspond to positive λ_k is less than *n*.

The eigenvectors of the matrix are mutually orthogonal, thus matrix of principal components loadings constitutes an orthogonal transformation $(LL^T = L^T L = I)$ of the original data into the set of uncorrelated variables.

So one can represent equations (3)-(4) using a matrix notation: $L\Sigma L^{T} = \begin{pmatrix} \lambda_{1} & 0 \\ \ddots & \\ 0 & \lambda_{n} \end{pmatrix}$.

Since principal components are orthogonal this is their covariance matrix.

Total variance of principal components coincides with total variance of primary data:

$$\sum_{k=1}^{n} DZ_{k} = \sum_{k=1}^{n} \lambda_{k} = tr(L\Sigma L^{T}) = tr((L\Sigma)L^{T}) = tr(L^{T}(L\Sigma)) = tr((L^{T}L)\Sigma) = tr\Sigma = \sum_{k=1}^{n} DX_{k},$$

thus the share of total primary data variance explained by the k-th principal component is

$$\rho_k = \frac{\lambda_k}{\sum_{k=1}^n \lambda_k}.$$
(5)

The first principal component score z_{1j} is known to be used as an aggregate economic indicator for the *j*-th country. A modified principal component approach to construction of integrate economic indicators (Aivazian et al., 2006) takes

$$y_{1j} = \sum_{i=1}^{n} l_{1i}^2 x_{ij}$$
(6)

instead of z_{1j} as an aggregate indicator of economic activity in international rankings. This approach is based on normalized property of component loadings: $l_1 l_1^T = \sum_{i=1}^n l_{1i}^2 = 1$. It allows to treat the weighting coefficients l_{1i}^2 as shares that reflect the impact of a primary variable x_i on the resulting integrate score. This indicator retains units of measure of initial variables x_{ij} . Unfortunately this approach fails to explain total variation of the data.

The proposed generalized modified principal component approach consists in calculation of an aggregate measure of national economic activity as a weighted sum of all its principal component scores:

$$I_{j} = \sum_{k=1}^{n} \rho_{k} y_{kj} = \sum_{k=1}^{n} \rho_{k} \sum_{i=1}^{n} l_{ki}^{2} x_{ij} = \frac{\sum_{k=1}^{n} \left(\lambda_{k} \sum_{i=1}^{n} l_{ki}^{2} x_{ij}\right)}{\sum_{k=1}^{n} \lambda_{k}}.$$
(7)

The k-th modified principal component score

$$y_{kj} = \sum_{i=1}^{n} l_{ki}^2 x_{ij}$$
(8)

is a constituting element of the composite index here. These constituting elements y_{kj} are weighted by the corresponding shares of explained variance ρ_k so as to retain units of measure of the original variables x_{ij} .

There is no loss in variance of the considered data. The explaining capability of the proposed indicator (7) is extended to the total variance of initial variables.

Suppose that original data can be grouped into a number (θ) of subsets or pillars that reflect definite attributes of social and economic pattern:

$$X = \begin{pmatrix} \widetilde{X}_1 \\ \vdots \\ \widetilde{X}_{\theta} \end{pmatrix}, \text{ where } \widetilde{X}_{\alpha} = \begin{pmatrix} X_{n_{\alpha-1}+1} \\ \vdots \\ X_{n_{\alpha}} \end{pmatrix} = \begin{pmatrix} x_{n_{\alpha-1}+1,1} & \cdots & x_{n_{\alpha-1}+1,m} \\ \vdots & \ddots & \vdots \\ x_{n_{\alpha},1} & \cdots & x_{n_{\alpha},m} \end{pmatrix}, \ 1 \le \alpha \le \theta, \ 1 \le \theta \le n.$$

The aggregate index I_j is a linear transform of original data. It can be represented by a sum of linear transforms of the pillars that constitute original data:

$$I_{j} = \frac{\sum_{k=1}^{n} \sum_{i=1}^{n} \lambda_{k} l_{ki}^{2} x_{ij}}{\sum_{k=1}^{n} \lambda_{k}} = \frac{\sum_{i=1}^{n} \sum_{k=1}^{n} \lambda_{k} l_{ki}^{2} x_{ij}}{\sum_{k=1}^{n} \lambda_{k}} = \frac{\sum_{\alpha=1}^{\theta} \sum_{i=n_{\alpha-1}+1}^{n_{\alpha}} \sum_{k=1}^{n} \lambda_{k} l_{ki}^{2} x_{ij}}{\sum_{k=1}^{n} \lambda_{k}}, \quad 0 = n_{0} < n_{1} < \dots < n_{\theta} = n.$$
(9)

Thus, the resulting aggregate indicator can be decomposed into a sum of partial indicators $I_{j\alpha} = \sum_{i=n_{\alpha-1}+1}^{n_{\alpha}} \sum_{k=1}^{n} \lambda_k l_{ki}^2 x_{ij} / \sum_{k=1}^{n} \lambda_k$, that reflect the effect of definite pillars on general

economic performance:

$$I_{j} = \sum_{\alpha=1}^{\theta} I_{j\alpha} .$$
 (10)

The proposed methodology is applied to evaluate the national competitiveness and to build the corresponding ranking of the countries in Eurasian region.

We use the data for 76 countries of Europe and Asia (*j*=76) available in (Global Competitiveness Report, 2017). The indicators of competitiveness are grouped into 12 categories, the pillars of competitiveness (θ =12), that represent three key determinants of development (subindices): fundamental factors (institutions (α = 1), infrastructure (α = 2), macroeconomic environment (α = 3), health and primary education (α = 4)), factors of efficiency (higher education (α = 5), goods (α = 6), labor (α = 7) and financial (α = 8) markets efficiency, technological readiness (α = 9) and market size (α = 10)) and innovation factors (business sophistication (α = 11) and R&D innovation (α = 12)).

CDI uses an arithmetic mean to aggregate these pillars. The stage of development achieved by a country, as proxied by the country's GDP per capita and the share of raw

materials exports, affects the weights assigned to the three subindices (Global Competitiveness Report, 2017-2018). Countries are classified into factor-driven, efficiencydriven and innovation-driven economies. A country may be also in transition from one stage to another. GCI attributes higher relative weights to those pillars that are more relevant for the economy given its particular stage of development.

We use 109 indicators of the GCI database for the year 2017-2018. There is an ambivalent representation of the data. A group of 81 indicators which represent mainly WEF's Executive Opinion Survey data are scaled from 1 to 7 (best). These indicators reflect qualitative aspects of competitiveness, such as: property rights; quality of roads; internet access in schools; effectiveness of anti-monopoly policy; reliance on professional management; quality of scientific research institutions and so on. There are two 2 complex indicators (domestic market and foreign market size indices) among them (Global Competitiveness Report, 2017-2018).

The other 28 indicators have different dimensions (e.g. strength of investor protection (0-10 (best)); fixed telephone lines/100 pop.; life expectancy (years); tertiary education enrollment (%) and so on). To make them compatible with the previous group we normalize

them into the 1-7 range: $x_{ij}^n = 1 + 6 \left(\frac{x_{ij} - x_{ij}^{\min}}{x_{ij}^{\max} - x_{ij}^{\min}} \right)$, if an indicator corresponds to the case "the

more the better", or $x_{ij}^n = 1 + 6 \left(\frac{x_{ij} - x_{ij}^{\max}}{x_{ij}^{\min} - x_{ij}^{\max}} \right)$, if the case is "the less the better". Here x_{ij}^n is a normalized variable; x_{ij}^{\max} and x_{ij}^{\min} are correspondingly the maximum and the minimum

value of initial indicator x_{ij} .

Imagine now that we handle with such normalized variables x_{ij}^n instead of x_{ij} in all the expressions (1)-(10) above.

Results and discussion

We use Gretl to calculate principle component loadings for 109 initial variables. There are 74 principal component vectors with positive eigenvalues. So the PCA actually yields reduction of factor space dimension.

For each country we calculate the overall index of competitiveness I_j by summing up modified principal component scores y_{kj} weighted by the corresponding share of explained variance ρ_k . Besides, we obtain partial indices as the sums of weighted modified principal component scores for each of 12 data pillars. These sub-indices generate the country's rankings with respect to particular pillars. They provide a glimpse of the factors of competitiveness and of the potential to improve it.

For instance, Switzerland – the overall rating leader – ranks the first in macroeconomic environment, labor market efficiency, business sophistication and R&D innovation. Still it is the 3rd in technological readiness, the forth in infrastructure, health and primary education as well as in financial market development; the fifth in institutions, and only the 8th in higher education and training and the 9th in goods market efficiency. So it possesses a huge potential of competitiveness enhancement. If this potential is realized Switzerland could enhance its leading competitive positions on the global scale. We do not take into consideration its lower position in market size pillar as it could be hardly improved.

The sum of 12 pillar sub-indices gives the overall national competitiveness index I_j and the country's ranking.

The generalized modified principal component (GMPC) ranking is represented by tab. 1. A country's number (*j*) here corresponds to its rank.

The comparison of GMPC and GCI rankings brings controversial results (tab. 1, fig. 1). For the first group of countries (ranks from 1 to 21) the position has turned out approximately the same, as in GCI, with exception of Germany (-6 positions) and Iceland (+6 positions). If we address the pillars indicators, Germany has got only the 23rd rank for health and primary education and the 29th rank for the goods market efficiency. On the other hand, Greece, for example, is placed at the 18th position for health and primary education, because it is characterized by tertiary education enrollment of more than 100% (namely 113,87%), as compared, for instance, to Germany that reports "merely" 68,2% enrollment. Unfortunately, enrolment has nothing to do with the quality of education. Anyway, this indicator has influenced the final result.

Controversial indicators in the GCR database may partially stand for the observed deviations in results. If the leaders are nearly the same, then we may guess that GCI ranking vulnerability accounts for data collection methodology and may doubt if peculiar pillar weights imposed to different countries in GCI are relevant.

It should be noted that the countries rating according to the first principal component yields approximately similar but still slightly different results (tab. 1). The deviations from the GMPC rating are within ± 8 positions (India is the only exception: its PC1 rank would be 15 positions higher). The first principal component (PC1) explains 47,13% of total variation of original data, so it could not provide the same ranking as the GMPC analysis. The ranking

based on PC1 neglects more than half of data scatter, so it may be considered only as a proxy for the comprehensive GMPC rating.

ng,			ıre,	ıt,		nd ⊧5	ket	tet	nt,	cal (=9		on,			ы В		ස
raki		ions	uctu	nic	and v on,	on a ζ, α=	marl Icy,	nark Icy,	ial omei	ologi ss, o	size	ss icati	tion,	ting a)	ratin	ting	ratin
IPC		titut 1	rastr 2	icro- non /iror 3	alth mar icati	gher icati	ods icier 6	bor 1 icier 7	rket rket eloj	chnc dine	urket 10	sine bhist 11	cD 12	I rai ırasi	<u>i</u> CI	1 rai	C1
5.~	Country	, Ins α=	Inf α≕	Ma ecc env α=α	He prii edu α=.	Hig edu trai	G eff. €	Lal eff	Fin ma dev α=:	Tea	$M_{\alpha=}$	$\operatorname{Bu}_{\alpha=\alpha}$	R& inn a=	бĘ	\ \ \ \ \ \	PC	ΔF
1	Switzerland	5	4	2	4	8	2	2	4	3	27	1	1	2	0	1 2	0
3	Netherlands	7	6	8	5	3	12	7	15	9	17	4	7	3	0	3	0
4	Hong Kong Finland	6	1	10	22	13	6	4	3	11	22	9	26	5	1	7	3
6	UK	9	10	30	13	17	3	3	14	10	7	7	13	7	1	8	2
7	Sweden	10	16	5	12	10	18	13	7	5	28	6	3	6	-1	5	-2
8	Japan Denmark	14	17	40 6	15	23	27	19 6	21	12	4	10	2	8	2	6 12	-2
10	Germany	15	8	7	23	15	29	11	12	14	3	5	6	4	-6	11	1
11	Norway	4	27	4	2	7	20	5	5	4	37	12	12	10	-1	10	-1
12	UAE	3	22	19	28	38	13	9	11	20	20	14	21	14	1	13	0
14	Israel	20	19	26	11	22	14	16	10	23	42	11	4	13	-1	17	3
15 16	Austria France	18 26	13	17 24	18 21	16 21	19 47	22 34	24 19	22 13	31 6	3	11	15	0	15	0
17	Iceland	11	24	23	3	9	26	8	34	8	74	24	17	24	7	18	1
18	Ireland	16	21	18	14	6	7	14	47	21	33	19	18	20	2	20	2
20	Korea	39	7	9	25	20	21	44	44	6	10	21	9	22	2	22	2
21	Qatar	13	38	15	27	42	5	17	8	26	39	23	19	21	0	19	-2
22	Estonia	25	9 20	11	61 44	11	25	28	9	27	15 61	20 40	23	25	-10 2	21	-1 0
24	Spain	40	12	37	20	12	43	42	40	25	13	25	33	29	5	27	3
25	Malaysia	17	23	34	51	43	36	23	16	42	19	22	20	19	-6	24	-1
20	Malta	31	31	22	10	32	4 56	20	23	10	- 58 - 69	26	34	39	5	25	-1
28	Portugal	35	14	48	31	24	28	36	64	30	40	35	29	37	9	28	0
29	Czech Republic	43	41	13	19	27	50 30	35	25	29	32 56	30	30	27	-2	30	1
31	Saudi Arabia	19	40	42	45	34	32	65	28	45	12	29	36	26	-5	29	-2
32	China	32	28	12	52	44	68	26	30	51	1	27	25	23	-9	31	-1
34	Lithuania	41	30	35	40	28	42	45	42	24 28	51	38 39	35	36	2	37	4
35	Azerbaijan	28	30	68	63	58	24	12	36	41	49	32	32	30	-5	33	-2
36	Italy	64 24	25	41	17	33	62	59 51	68 26	38 53	9 47	17	24	38	2	36	0
38	Poland	51	37	25	30	31	38	52	41	44	16	48	44	34	-4	38	0
39	Latvia	56	39	28	46	29	33	40	53	32	59	47	54	45	6	40	1
40	Thailand	50	59	20	59 65	39	37	43	20	43 57	14	36	40	28	-13	44 39	-2
42	Slovakia	69	45	21	41	53	55	58	31	31	44	41	50	49	7	42	0
43	Russia Greece	54 61	34 26	49 72	66 24	25 18	52 59	39 66	66 76	39 35	5 43	50 46	37 58	33 66	-10 22	46	3
45	Hungary	65	43	43	36	62	53	50	46	34	36	57	38	50	5	45	0
46	Croatia	67	33	39	26	45	45	64	59 54	37	52	65	67	58	12	48	2
48	Georgia	34	44	50	53	64	<u>1</u> 1	38	58	60	63	60	73	54	6	54	6
49	Kazakhstan	38	46	71	58	46	31	29	67	47	34	69	60	48	-1	55	6
50	Indonesia	44 36	58 49	4/	50 70	59 60	41	41 60	27	59 67	70 8	44 31	56 31	31	-20	51 43	-8
52	Bulgaria	59	53	27	69	40	40	46	49	40	48	56	45	42	-10	57	5
53 54	Albania Kuwait	47	65 63	56 29	32	37	39 63	63 67	55 33	58 56	66 38	58	63 70	59 43	6	56 49	3
55	Jordan	46	61	55	49	52	51	70	<u>39</u>	50	54	42	42	53	-2	60	5
56	India	29	50	45	72	61	73	55	32	71	2	28	28	35	-21	41	-15
57 58	Serbia	57 66	60 52	31 54	54 38	57 47	48 57	56 62	70 65	48 49	30 50	70	66 62	55 61	-2	61 65	4
59	Turkey	52	47	53	74	30	44	73	43	55	11	51	53	44	-15	52	-7
60	Bhutan	27	71	65	62	70	67	21	35	66	76	53	64 55	64	4	53	-7
62	Lebanon	76	74	74	33	49	54	72	40 37	36	53	37	46	75	13	58	-4
63	Iran	60	35	66	47	41	75	76	71	61	18	59	51	56	-7	62	-1
64 65	Sri Lanka Tajikistan	53 30	56 64	59 75	48	65 63	66 69	75	38 52	70 76	46 73	45 55	48	65 62	-3	59 63	-5 -2
66	Philippines	71	73	36	68	54	76	53	29	62	23	52	52	47	-19	66	0
67 68	Ukraine	73 68	54 68	76 60	64 59	26 48	65 46	57 47	74	64 65	35	66 72	47 68	63 72	-4 1	68 72	1

Tab. 1. GMPC rating of Eurasian countries

The 12th International Days of Statistics and Economics, Prague, September 6-8, 2018

GMPC raking, j	Country	Institutions, $\alpha = 1$	Infrastructure, $\alpha=2$	Macro- economic environment, a=3	Health and primary education, α=4	Higher education and training, $\alpha=5$	Goods market efficiency, α=6	Labor market efficiency, $\alpha=7$	Financial market development, a=8	Technological readiness, $\alpha=9$	Market size, $\alpha = 10$	Business sophistication, α=11	R&D innovation, α=12	GCI rating (Eurasia)	∆ GCI rating	PC1 rating	Δ PC1 rating
69	Bosnia-Herzegovina	75	67	52	37	68	74	71	69	54	62	71	72	74	5	70	1
70	Moldova	74	57	73	60	66	60	61	75	52	72	75	76	68	-2	69	-1
71	Laos	49	69	69	75	72	58	25	51	72	64	61	57	70	-1	67	-4
72	Kyrgyz Republic	63	75	58	57	67	49	68	63	68	71	76	75	73	1	75	3
73	Bangladesh	70	70	64	56	74	61	69	60	73	29	68	71	71	-2	74	1
74	Cambodia	72	72	63	73	76	71	33	62	69	57	67	69	69	-5	73	-1
75	Nepal	62	76	67	67	73	64	54	45	74	60	74	74	67	-8	76	1
76	Pakistan	58	66	70	76	75	70	74	50	75	26	54	49	76	0	71	-5

Source: Own elaboration and Global Competitiveness Report, 2017-2018.

Fig. 1: GCI as compared to GMPC ranking

Source: Own elaboration and Global Competitiveness Report, 2017-2018.

Conclusion

Measurement of the countries competitiveness is an ambiguous task not only because a competition is still a controversial term, but also for it takes into account a large number of indicators which are hard to compare.

We propose a kind of "natural" measure of national competitiveness as the sum of modified principal component scores weighted the shares of explained variance of original data. The typical features of this approach are twofold. Firstly, we do not impose any subjective weights to the factors that influence economic competitiveness as opposed, for instance, to GCI. Secondly, unlike ordinary PCA there is no neglect to any residual variance of original data. The generalized modified principal component analysis regards the overall data scatter.

The proposed methodology can be applied to construction of an overall economic indicator that reflects various qualitative aspects of national economic performance and can be treated as an alternative to GDP.

The further research can be devoted to application of this method of competitiveness assessment to calculations of economic effect of the Euroasian or other regional integration – at macro level of economic research and estimation of national companies success by evaluation of KPI or other indicators of economic activities - at micro level of research.

Acknowledgment

The publication was prepared with the support of the "RUDN University Program 5-100".

References

1. Aiginger, K. (2006). Competitiveness: From a Dangerous Obsession to a Welfare Creating Ability with Positive Externalities. *Journal of Industry, Competition and Trade,* 6(2), 161-177.

2. Aivazian, S.A., & Mkhitarian, V.S. (2001). *Applied statistics. Basics of econometrics.* (in Russian). Moscow: UNITI-DANA.

3. Aivazian, S.A., Stepanov, V.S., & Kozlova, M. I. (2006). Measurement of Synthetic Categories of Quality of Life of the Regional Population and Identification of the Key Directions to Improve Regional Policy (in Russian). *Applied Econometrics*, 2 (2), 18-84.

4. Barrington-Leigh, C., & Escande, A. (2018). Measuring Progress and Well-Being: A Comparative Review of Indicators. *Social Indicators Research*, *135* (3), 893-925.

5. Pérez-Moreno, S., Rodríguez, B., & Luque, M. (2016). Assessing Global Competitiveness under Multi-criteria Perspective. *Economic Modelling*, *53*, 398-408.

6. Peters, W. S., & Butler, J. Q. (1970). The Construction of Regional Economic Indicators by Principal Components. *The Annals of Regional Science*, *4* (1), 1-14.

7. Poledníková, E., & Melecký, L. (2017). Weighting Methods for Constructing Composite Indices in Regional Development. *The 11th International Days of Statistics and Economics. Conference Proceedings.* Prague: Libuše Macáková, Melandrium, 1253-1262.

8. Porter, M. (1990). Competitive Advantage of Nations. New York: The Free Press.

9. Ram, R. (1982). Composite Indices of Physical Quality of Life, Basic Needs Fulfilment, and Income. A "Principal Component" Representation. *Journal of Development Economics*, *11*, 227-247.

10. The Global Competitiveness Report 2017-2018. (2017). Geneva: World Economic Forum.

11. Thore, S., & Tarverdyan, R. (2016). The Sustainable Competitiveness of Nations. *Technological Forecasting & Social Change*, *106*, 108-114.

12. Zhgun, T.V. (2017). Building an Integral Measure of the Quality of Life of Constituent Entities of the Russian Federation Using the Principal Component Analysis. *Economic and Social Changes: Facts, Trends, Forecast, 10* (2), 214-235.

Contacts

Alexei Verenikin Lomonosov Moscow State University Leninskie gory, 3rd new educational building, Moscow, 119991, Russian Federation <u>verenikin@mail.ru</u>

Anna Verenikina Peoples' Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya Str., Moscow, 117198, Russian Federation <u>verenikina_ayu@pfur.ru</u>