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HOW ARE THE CZECH REGIONS DIFFERENT AND 

MUTUALLY SIMILAR IN TERMS OF WAGES? CLUSTER 

ANALYSIS AND WAGE MODELS 

Diana Bílková 

 

Abstract 

Income levels of the population have been constantly researched by economists in the 

developed countries mainly due to their connection with the living standards of the 

population. Knowledge of the wage distribution and its comparison from various socio-

economic and time-spatial aspects is a precondition for the assessment of living standards, 

social security and equality in the division of material values produced by the society. 

Statistical analysis of the wage distribution also forms the basis for government social policy, 

taxation, budgetary and other decisions. Moreover, the direct connection between wages and 

the purchasing power of the population brings tracking the level, structure and development 

of the wage distribution to the foreground when identifying sales opportunities for the 

products of both long- and short-term consumption.  

The present paper deals with a comparison of wage levels of fourteen regions in the 

Czech Republic. Similar wage-level clusters were created using the methods of cluster 

analysis. Three regions with the highest and lowest wage levels, respectively, were selected. 

For these six regions, the model wage distribution was presented to enable the comparison of 

wage development over the past seven years. Three-parameter lognormal curves represent the 

basis of the theoretical wage distribution. 

Key words: cluster analysis, method of the furthest neighbour, Euclidean distance matric, 

wage models, Akaike and Bayesian information criterions 

JEL Code:  J31, D31, E24 

 

Introduction 

Standards of living cannot be exhaustively quantified since they are defined as the level of 

comforts that include the aggregate of all living conditions, both material and social. We 

therefore focus only on statistically measurable components of living standards. It is 
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necessary to capture the level and structure of wages comprehensively, proposing appropriate 

probability models of the wage distribution for particular social groups and the entire 

population, respectively, allowing for proper quantification of constituent wage-based 

elements of living standards of the population.  

A number of authors deals with the issue of the labor market and living standards of 

the population of the Czech Republic, see for example (Pavelka & Löster, 2013) and (Pivoňka 

& Löster, 2014). 

Probability models represent simple approximations of often complicated empirical 

distributions. Their parameters’ developmental trends form the basis for future consumption 

estimates and the predictions of the consequences of various social and economic provisions. 

Economic developments always follow political ones, thus certain inertia in the 

development of the wage distribution can be seen, its changes emerging gradually with the 

passing of time. An impact of the 2008 financial crisis, for instance, became fully evident in 

the wages of Czech employees as late as in 2011, which was a critical year in terms of the 

wage level development in the Czech Republic, the economic downturn slowing and 

eventually freezing the growth of wages. 

 

1 Database  

Data for the present study are collected from the official website of the Czech Statistical 

Office (CSO), the database containing the total wage distribution for the period 2009–2015 

that covers all employees in the Czech Republic broken down by regions. Annual data are 

related to gross monthly nominal wages in the respective years, the average (median) wage, 

for instance, representing average (median) gross monthly wage over the year.  

There are also data in the form of the interval frequency distribution with uneven and 

extreme open intervals. Neither more detailed nor individual data have been currently 

available. Since only nominal wage data are provided by the CSO, the obtained average and 

median nominal wages had to be converted to average and median real wages using the CSO-

reported inflation rate data.  

Only the data on nominal wages having been available, inflation rates had to be used 

for the conversion to a real wage that reflects purchasing power allowing for a comparison of 

the wage development without inflation effects in the research period. The rate of inflation is 

derived from the consumer price index (CPI), based on the Laspeyres price index. The real 

wage was calculated using the real wage index, the nominal wage index being divided by the 
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CPI (living cost index). The data were processed utilizing SAS and Statgraphics statistical 

programme packages and Microsoft Excel spreadsheets.  

The late 1990s marked the culmination of Czech economy transformation to the 

market economy. Enterprises were being privatized, industries restructured and prices 

liberalized. These processes necessitated a change in the methodology of statistical analysis, 

the combination of exhaustive and sample surveys becoming more appropriate since the 

number of small businesses was growing considerably. A high rate of inflation was recorded, 

namely 8.5–10.7 per cent between 1996 and 1998. In 2003, on the other hand, the inflation 

rate fell as low as 0.1 per cent, rising to 6.3 per cent in 2008, when the recession triggered 

a sharp slowdown in real wage growth. Currently, the rate of inflation remains at a very low 

level (0.3 and 0.7 per cent in 2015 and 2016, respectively). 

The research data include wages and salaries paid to employees for work performed in 

the private (business) and public (state budget, non-business) sectors, respectively. In terms of 

the data presented on the CSO website, “wages” cover remuneration for work done in both 

the sectors. 

An impact of the 2008 financial crisis and subsequent economic downturn was clearly 

noticeable in the Czech Republic. Having recorded a decline of 4.8 per cent in 2009, the 

economy revived slightly over the following two years, the GDP growth reaching maximum 

of 2.3 per cent. However, since firms did not have enough time to recover and boost their 

investments, the Czech economy declined further by 0.8 and 0.7 per cent in 2012 and 2013, 

respectively. Despite the 2010 warnings of independent analysts, a fall into a protracted 

recession was not prevented. (This double recession is considered even more severe than the 

1997–1998 slump. Having fallen by less than one percentage point of GDP, the Czech 

economy reported a GDP growth of 1.4 per cent in 1999.) In 2014 and 2015, however, we 

witnessed a GDP growth of 2 and 4.3 per cent, respectively. For due reasons, the present 

study spans just the seven-year period 2009–2015. 

 

2 Theory and Methods 

 

2.1      Cluster Analysis 

Cluster analysis was used to divide the Czech regions into relatively homogeneous groups 

according to their respective gross monthly wage levels. Multivariate data analysis, which is 

often done to process economic data (see, e.g., (Malec, 2016)), may include other approaches 
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to statistical data analysis, namely that of canonical correlation, or (Malec & Malec, 2013), 

deal with application of two-set multivariate statistical methods to the Czech Republic arrival 

tourism data. (Particular aspects of cluster analysis are dealt with in (Longford & Bartošová, 

2014) (Makhalova &Pecáková, 2015), (Řezanková & Löster, 2013) or (Šimpach & Pechrová, 

2016).) 

Multidimensional observations can be used when classifying a set of objects into 

several relatively homogeneous clusters. We have a data matrix X of n X p type, where n is 

the number of objects and p is the number of variables. Assuming various decompositions S(k) 

of the set of n objects into k clusters, we look for the most appropriate decompositions. The 

aim is to find the objects within certain clusters that are as similar as possible to those from 

other clusters. Only decompositions with disjunctive clusters and tasks with a specified 

number of classes are conceded. 

 

2.1.1 Criteria for Assessing the Quality of Decomposition 

The general task is to assess to what extent the cluster analysis aim has been achieved in 

a given situation, while applying a specific algorithm. Several criteria – decomposition 

functions – are proposed for this purpose. The most frequently used ones exhibit the following 

characteristics. They are the matrices of internal cluster variance 
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There are vectors of the observations for the ith object and hth cluster xhi, the averages for the 

hth cluster xh
and those for the total set .x . There are pth-membered vectors, E, B and T being 

symmetric square matrices of the pth order. The principal aim, consisting in the creation of 
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mutually distant compact clusters, is fulfilled by reaching the minimum of the total sum of the 

deviation squares of all values of corresponding cluster averages 
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i.e. the Ward criterion. Since the st T is the same for all decompositions, the minimization of 

the st E means the same as that of the st B. In order to become independent on the used units 

of measurement (or, more generally, the invariance to the linear transformations), it is 

recommended to minimize the determinant of the matrix of the internal cluster variance 

E2C  

or to maximize the trace criterion 
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The criteria mentioned above are employed not only retrospectively to assess the 

decomposition quality accomplished, changes in criterion values also guiding the creation of 

clusters. Since the criteria ultimately reach the limits (C1 and C2 the minimum, C3 and C4 the 

maximum) at k = n, it is necessary to find the extreme of the purpose function that properly 

includes the loss following from the growth in the number of clusters. The Ward criterion, for 

instance, is proposed to move towards the minimization of the quantity 

,11 kzCZ   (5) 

where constant z represents the loss resulting from an increase in the number of clusters by 

one. 

 

2.1.2 Distance and Similarity of Objects 

Having selected the variables characterizing the properties of the clustered objects and found 

their values, we decided on the method of the evaluation of distance or similarity of objects, 

the calculation of appropriate measures for all pairs of objects often being the initial stage of 

clustering algorithm implementation. The symmetric square matrix of n X n type has zeros or 

ones on the diagonal, depending on whether it is the matrix of distance D measures or that of 

similarity A measures, respectively. 
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Let us now focus on measuring the distance of the objects described by quantitative 

variables. The Hemming distance can be used when individual variables are roughly on the 

same level or at least expressed in the same units of measurement 
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The Euclidean distance can be applied in the same case 
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as well as the Chebyshev distance 
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All the above mentioned measurements have some common drawbacks – the 

dependence on the used measuring units that sometimes hinders the meaningful acquisition of 

any sum for different variables and the fact that if the variables are considered in sum with the 

same weights, the strongly correlated variables have a disproportionately large effect on the 

outcome. The starting point is the transformation of variables. The adverse effect of the 

measuring units can be removed by dividing all the values by the balancing factor, which can 

be presented with the corresponding average ,x j
 standard deviation sj or the range after 

deletion of extremes 
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Particular variables can be also assigned more weight – having decided subjectively or on the 

basis of relevant information – their values then appearing in the formulas for the calculation 

of distance. 

Other measurements of distance and similarity of objects for numerical, ordinal, 

nominal and alternative variables are described in the professional literature. When dealing 

with variables of a different type, the Lance-Williams distance is recommended 
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2.1.3 Algorithm for the Creation of Hierarchical Sequence of Decompositions 

The creation of a hierarchical sequence of decompositions belongs to the most widely used 

techniques applied in the cluster analysis, occurring sequentially in the following steps:  

1) D matrix calculation of appropriate measurements of distances; 

2) the start of the decomposition process S(n) from n clusters, each of them containing one 

object; 

3) the assessment of the symmetric matrix D (a lower or upper triangle), finding two 

clusters (the hth and h/ th ones) whose distance Dhh
/ is minimal; 

4) the connection of the hth and h/ th clusters into a new gth cluster, the replacement of the 

hth and h/ th row and column in the matrix D with those of the new cluster, the order of 

the matrix being reduced by one; 

5) renumbering of the order of the cycle l = 1, 2, …, n – 1, the identification of the 

connected objects h, h/ and the level of the connection dl = Dhh
/; 

6) returning to step (3) if the creation of decompositions has not been completed by 

connecting all objects into a single cluster S(1). 

A divisive hierarchical procedure, contrary to the agglomerative hierarchical one, is 

less-used, starting from a single cluster S(1), splitting one of the clusters into two in each step 

and obtaining S(n) at the end of the process. The results of hierarchical cluster procedures can 

be effectively displayed in the form of a graphical tree dendrogram. 

Given the choice of variables x1, x2, …, xp and the matrix of distances D, the results of 

applying the described algorithm vary according to the way the distance between clusters is 

evaluated. 

 

Nearest Neighbour Method 

Within the nearest neighbour method, both clusters, whose connection is considered, are 

represented by objects that are the closest to each other. The Dhh
/distance between the hth and 

h/ th clusters therefore represents the minimum of all q = nh nh
/ distances between their objects, 

the procedure of the third phase of the above algorithm thus being specified. In the fourth 

step, the hth and h/ th rows and columns in the distance matrix are replaced with the new gth 

cluster’s row and column of distances. In the lth cycle, total n ‒ l ‒ 1 distances determined by  

.),(min  //// D hgD hgD gg 
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can be written.  

If the way of evaluation of the proximity or similarity of clusters is given, which also 

determines the conversion of the distance matrix in each cycle, the above algorithm allows for 

the creation of a hierarchical sequence of decompositions and construction of the dendrogram. 

When using this method, even considerably distant objects can get together in the 

same cluster if a large number of other objects create a kind of bridge between them. This 

typical chaining of objects is considered as a drawback, especially if there is a reason for the 

clusters to acquire the usual elliptical shape with a compact core. This method, however, 

possesses many positive features that outweigh the above disadvantage. 

 

Furthest Neighbour Method 

The method of the furthest neighbour is based on the opposite principle. The criterion for the 

connection of clusters is the maximum of q possible between-cluster distances of objects. 

When editing the matrix of distances, we proceed according to 

.DDD hhgg ),(max  ////
gg  (11) 

An adverse chain effect does not occur in this case. On the contrary, there is 

a tendency towards the formation of compact clusters, not extraordinarily large, though. 

 

Average Linkage Method (Sokal-Sneath Method) 

As a criterion for the connection of clusters, this method applies an average of the q possible 

between-cluster distances of objects. When recalculating the distance matrix, we use 
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The method often leads to similar results as the furthest neighbour one. 

 

Centroid method (Gower method) 

Unlike the above methods, this one is not based on summarizing the information on between-

cluster distances of objects, the criterion being the Euclidean distance of centroids 
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The recalculation of the distance matrix is done as follows 
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Ward Method 

The method uses a functional of the decomposition quality C1 in formula (4). The criterion for 

the cluster connection is an increment to the total intra-group sum of the squares of 

observation deviations from the cluster average, thus 
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The increment is expressed as a sum of squares in an emerging cluster which is reduced by 

the sums of squares in both vanishing clusters. Using arithmetic modifications, the expression 

can be simplified into the form 
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This equation is a product of the Euclidean distance between the centroids of clusters 

considered for the connection and a coefficient depending on the cluster size. The value of 

this coefficient grows with an increasing size of clusters, and for fixed nh + nh
/ it represents 

the maximum in the case of same-size  (nh = nh
/) clusters. Since we create the connections to 

ensure the minimization of the criterion Δ C1, the Ward method tends to eliminate small 

clusters, i.e. to form those of roughly the same size, which is often a desirable property. 

Starting from the matrix of Euclidean distances between objects in the process of its 

modification, we can use the formula  
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2.2      Lognormal Distribution 

The importance of the lognormal distribution as a sample distribution model is beyond all 

discussion. It has many practical applications in various fields, e.g. economics, sociology, 
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technology or astronomy. The lognormal model allows for capturing differentiating features, 

such as random-to-systematic variance changes, sequential effects of interdependent factors or 

trends towards geometrically sequential development. 

In the field of economics, wages and incomes of the population are among the many 

phenomena that the lognormal model enables to interpret. When choosing a curve for 

modelling frequency distribution, it is necessary to meet the following requirements. The 

curve is supposed to 

 reflect the given shape of the frequency distribution, being fully compliant with 

the relevant distribution modelled according to its basic characteristics, i.e. location, 

variability, skewness and kurtosis; 

 have a relatively simple shape so that it can be easily manipulated, depending 

on a small number of parameters estimated using a suitable method of point parameter 

estimation; 

 show interpretable parameters allowing for the prediction of their values 

without using the methods of statistical time series analysis, especially in those cases 

when sufficiently long time series are not available. 

Every option is always a compromise between the above requirements. The parameter 

functions of lognormal curves allow for an easy interpretation. In the case of a three-

parameter lognormal curve, the parameter θ represents the minimum of the curve (the 

beginning of distribution, theoretical minimum), the expression exp(μ) denote the distance of 

the median wage (income) from this theoretical minimum, parameters μ and σ2 representing 

the expected value and variance of logarithms of wage (income) distances from the theoretical 

minimum θ. 

An old notion that in the area of economy the logarithms of the distances of variables 

from the theoretical minimum θ are normally distributed stems from the fact that the effects of 

a large number of various stimuli, resulting in the value of a given quantity, are proportional 

to that quantity at the corresponding time.  

A strong concordance of the model with the global wage or income distribution does 

not mean, however, that a lognormal distribution will suffice for all circumstances or 

extremely homogeneous subgroups of employees or households categorized in minute detail 

according to the selected demographic and socio-economic indicators. If the latter is not the 

case, it is possible to model the wage or income distribution accurately enough with the use of 

a lognormal curve, parameters of the lognormal distribution being appropriately estimated 
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from the sample. Alternatively, a shift of the curve can be made with either a subjectively 

determined wage/income minimum or another (shift) parameter, which is estimated from the 

sample. This solution led to positive results in the construction of wage and income models 

for a nationwide scale and large relatively homogeneous groups roughly categorized by some 

demographic and socio-economic indicators. The lognormal model, on the other hand, is not 

suitable for subsets formed from minutely classified employees or households. However, this 

is not the case of the present study that focuses on the nationwide wage distribution in the 

Czech and Slovak Republics. 

 

2.2.1 Three-Parameter Lognormal Distribution 

A continuous random variable X has a three-parameter lognormal distribution with parameters 

μ, σ2 and θ, where ‒∞ < μ < ∞, σ2 > 0, -∞ < θ < ∞, if its probability density function has the 

form 
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else.  

The three-parameter lognormal distribution with parameters μ, σ2 and θ is marked 

LN(μ, σ2, θ), where parameter θ is the beginning of the distribution (theoretical minimum). 

The probability density function of the three-parameter lognormal distribution is asymmetric, 

positively skewed. Figures 1 and 2 display the graphs of the probability density function of 

the three-parameter lognormal distribution depending on the values of parameters of this 

theoretical probability distribution. 

The probability density function of the three-parameter lognormal distribution is 

sometime introduced in the form 
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else,  

where it is valid between the expressions of probability density functions (18) and (19) that 
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The distribution function of the three-parameter lognormal distribution has a form 
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If the random variable X has a three-parameter lognormal distribution LN(µ, σ2, θ), 

then the random variable 
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has a normal distribution N(µ, σ2) and the random variable  
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has a standardized normal distribution N(0; 1). 

Parameter μ is then the expected value of a random variable (21), parameter 2 being 

its variance. Parameter θ is the beginning of the distribution, i.e. theoretical minimum of the 

random variable X. For ,)(exp
2

  the rth common and central moments of the three-

parameter lognormal distribution have the forms 
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specifically, 
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We obtain the expressions for the expected value and the variance of the random variable X 

with a three-parameter lognormal distribution from the expressions (23) and (24) 
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The formula for median 
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is derived from the relationship for the 100-percent-quantile of the distribution 
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The three-parameter lognormal distribution is unimodal, having a single mode 
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The relationship between the expected value, median and mode follows from the expressions 

(27), (29) and (31) 
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which is typical for a positively skewed frequency distribution. 

The coefficient of variation of the three-parameter lognormal distribution is a function 

of all three parameters 
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(33) 

The Gini coefficient of differentiation also depends on the values of all three parameters μ, σ2 

and θ of the distribution 
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Fig. 1: Probability density function of lognormal distribution for parameter values σ = 2 

(σ2 = 4); θ = 2 
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Fig. 2: Probability density function of lognormal distribution for parameter values μ = 

3; θ = 2 
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Moment measurements of skewness and kurtosis depend on a single parameter σ2 

,)2(1]2)([exp1)(exp 22

1
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 (35) 
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2.2.2 Maximum Likelihood of Point Parameter Estimation 

The issue of point parameter estimation was studied by many authors in statistical literature, 

see for example (Malá, 2016), (Sládek, 2017) or (Šimpach, 2012).   

Let a random sample of size n be taken from the three-parameter lognormal 

distribution with probability density function (18). The likelihood function then has the form 
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We determine the logarithm of the likelihood function 
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Then we set the first partial derivatives of the likelihood function logarithm equal to zero 
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After adjustments, the maximum likelihood estimates of parameters μ and σ2 for the given 

parameter θ are obtained as follows 
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If the value of the parameter θ is known, we get the maximum likelihood estimates of 

the remaining two parameters of the three-parameter lognormal distribution using the 

expressions (39) and (40). However, if the value of the parameter θ is unknown, the situation 

is more complicated. It can be proved that if the parameter θ is close to min{X1, X2, …, Xn}, 

then the maximum likelihood approaches infinity. Moreover, the maximum likelihood method 

is often combined with the Cohen method, the smallest sample value being set equal to the 

100-(n + 1) 1 -percent quantile 

.)(exp )1(min
1uˆˆˆx n

V
 

 (41) 

Equation (41) is then combined with equations (39) and (40). 

 

2.2.3 Akaike and Bayesian Information Criteria 

Let us consider L as the maximum value of the likelihood function for an assumed model of 

data, k and n denoting the number of parameters estimated and the sample size, respectively. 

The Akaike information criterion (AIC) has the form 

LkAIC ln22   (42) 

and the Bayesian information criterion (BIC) is defined as 

.LnkBIC ln2ln   (43) 

The model with minimal AIC or BIC values is preferred over other alternatives, AIC and BIC 

criteria also including a penalty which is an increasing function of the number of estimated 

parameters.  

 

3 Results 
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Figures 3 and 4 provide information on the geographical location of each region of the Czech 

Republic (their official names are presented in Table 1) and the respective level of the gross 

monthly wage. The figures clearly show a substantially higher wage level in the region of the 

capital Prague. A relatively high level of wages in Central Bohemian and Pilsen regions is 

noticeable, low levels, on the other hand, being reported in Karlovy Vary, Zlin and Olomouc 

regions. 

 

Tab. 1: Official names1) of regions of the Czech Republic2)  

Region Code Region Code 

Capital Prague Region A Hradec Kralove Region H 

Central Bohemian Region S Pardubice Region E 

South Bohemian Region C Vysocina Region J 

Pilsen Region P South Moravian Region B 

Karlovy Vary Region K Olomouc Region O 

Usti Region U Zlin Region Z 

Liberec Region L Moravian-Silesian Region T 

Source: www.mdcr.cz 

Fig. 3: Average gross monthly wages in respective regions of the Czech Republic in 2015 

 

Source: www.czso.cz 

                                                           
1) The names of most regions match those of their respective capitals. 
2)  Different backgrounds distinguish the Bohemian regions (grey) from Moravian ones (white). 
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Fig. 4: Median gross monthly wages in respective regions of the Czech Republic in 2015 

 

Source: www.czso.cz 

Tab. 2: Average unemployment rates (in %) in regions of the Czech Republic in 2015 
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Source: www.czso.cz 

The region of the capital Prague is not food and energy self-sufficient. Its 

macroeconomic statistics, however, considerably exceed those of other regions, wages earned 

in Prague resembling those received in more developed countries. One of the reasons is the 

concentration of industries with higher labour productivity such as finance and informatics. 

Corporate policies also play an important role, since Prague-based firms often produce values 

outside the capital but divide the profits at a place where they are headquartered. As expected, 

http://www.czso.cz/
http://www.czso.cz/


The 11th International Days of Statistics and Economics, Prague, September 14-16, 2017 

123 

 

the three regions with the highest wage levels are identical to those with the lowest 

unemployment rates in the same order. However, the order of the regions at the bottom wage 

levels is not the same as that of the regions with top rates of unemployment, neither the 

Moravian-Silesian Region nor Usti Region belonging to the three lowest wage level areas; for 

details, see Table 2. 

Figures 5–8 provide an overview of the results of regional cluster analysis according 

to the wage level employing the method of the furthest neighbour and Euclidean distance 

metric. 

The first cluster always contains only one element – the Capital Prague Region – in 

the case of both the average and median monthly wage (i.e. three- and five-cluster analysis, 

respectively), due to markedly higher wage levels in this respective region. 

 

Fig. 5: Cluster analysis using three clusters, furthest neighbour method and Euclidean 

distance metric; 2015 average wage 
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Source: Own research 

Fig. 6: Cluster analysis using five clusters, furthest neighbour method and Euclidean 

distance metric; 2015 average wage 
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Source: Own research 
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Fig. 7: Cluster analysis using three clusters, furthest neighbour method and Euclidean 

distance metric; 2015 median wage 
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Source: Own research 

Fig. 8: Cluster analysis using five clusters, furthest neighbour method and Euclidean 

distance metric; 2015 median wage 
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Source: Own research 

Within the division of the regions into three clusters by the average wage, the second 

cluster includes four elements – Central Bohemian, Pilsen, Liberec and South-Moravian 

regions. According to the median wage division, however, the second cluster has five 

elements; along with those four mentioned above, this cluster contains the Moravian-Silesian 

Region, which seems to be rather surprising since this region’s general unemployment rate 

reaches the highest value of the whole Czech Republic. The remaining regions form the third 

clusters. 

Within the division of the regions into five clusters by the average wage, the second 

cluster contains only one element, namely the Central Bohemian Region. However, according 

to the median wage, the second cluster consists of three elements – Central Bohemian, Pilsen 

and Liberec regions. The third cluster always comprises five elements – South Bohemian, 

Usti, Hradec Kralove, Vysocina and Moravian-Silesian regions by the average wage and 

South Bohemian, Usti, Hradec Kralove, Pardubice and Vysocina regions, respectively, 
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according to the median wage. The fourth cluster has only three elements in both cases – 

Pilsen, Liberec and South Moravian regions according to the average wage, and Karlovy 

Vary, Olomouc and Zlin regions by the median wage, the latter being those with the lowest 

wage levels. The fifth clusters formed by the average and median wage contain the four and 

two remaining regions, respectively; for details, see Figures 5–8). 

Theoretical models for the wage distribution of each region from 2009 onwards have 

been constructed. They are based on the use of the probability density function of three-

parameter lognormal curves, whose parameters were estimated using the maximum likelihood 

method. The beginning of these curves is represented by the value of the minimum wage in 

respective years; see Table 3. The accuracy of the models obtained was compared applying 

the Akaike and Bayesian information criteria, both of which take a number of the 

corresponding wage model parameters into account. 

 

Tab. 3: Minimum wage development (in CZK) since 2009 

Year 2009 2010 2011 2012 20133) 2014 2015 2016 2017 

Minimum wage 8,000 8,000 8,000 8,000 
8,0004) 

8,5005) 
8,500 9,200 9,900 11,000 

Source: www.mpsv.cz 

 

Fig. 9: Development of model wage distributions − Capital Prague Region 
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Source: Own research 

                                                           
3) In 2013, the beginning of lognormal curves was determined proportionally, i.e 

.2928´
12

00085008
70008 


 

 

4) From 1st January 2013 to 31st July 2013. 
5) From 1st August 2013 to 31st December 2013. 

http://www.mpsv.cz/
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Fig. 10: Development of model wage distributions − Central Bohemian Region 
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Source: Own research 

Fig. 11: Development of model wage distributions − Pilsen Region 
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Source: Own research 

Fig. 12: Development of model wage distributions − Karlovy Vary Region 
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Source: Own research 
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Fig. 13: Development of model wage distributions − Zlin Region 
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Source: Own research 

Fig. 14: Development of model wage distributions − Olomouc Region 
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Source: Own research 

Theoretical wage models using three-parameter lognormal curves and the maximum 

likelihood method of parameter estimation were created. Table 4 indicates the values of 

parameters estimated, Table 5 presenting the values of the Akaike and Bayesian information 

criteria, which enable to assess the estimation accuracy. Using Figures 9–14, the theoretical 

wage models capture the three regions with the highest (Prague, Central Bohemian and Pilsen 

regions) and the other three with the lowest wage levels (Karlovy Vary, Zlin and Olomouc 

regions).  

The above figures allow for comparison of the wage distribution development of the 

regions with the highest and lowest wages over the last seven years. As observed in the 

figures, distributions with a high wage level are characterized by higher variability than those 
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with a low wage level. Moreover, distributions with a low level of wages are more skewed 

and have higher kurtosis than those with high wage levels. 

 

Tab. 4: Parameter estimates of three-parameter lognormal distribution using maximum 

likelihood method (parameter θ equalling respective annual minimum wage) 

 

Region 

 

Est. 

Year 

2009 2010 2011 2012 2013 2014 2015 

Capital Prague Region μ 9,937 9,911 9,803 9,885 9,875 9,885 9,907 

σ2 0,765 0,746 0,740 0,761 0,752 0,765 0,777 

Central Bohemian Region μ 9,426 9,443 9,342 9,366 9,412 9,467 9,512 

σ2 0,732 0,707 0,683 0,702 0,699 0,711 0,742 

South Bohemian Region μ 9,112 9,156 9,124 9,092 9,176 9,250 9,312 

σ2 0,701 0,688 0,633 0,633 0,627 0,632 0,668 

Pilsen Region μ 9,298 9,316 9,202 9,226 9,275 9,371 9,426 

σ2 0,653 0,634 0,639 0,649 0,630 0,639 0,682 

Karlovy Vary Region μ 9,113 9,054 8,978 8,963 9,060 9,149 9,239 

σ2 0,737 0,627 0,686 0,635 0,577 0,616 0,670 

Usti Region μ 9,264 9,280 9,130 9,169 9,216 9,266 9,337 

σ2 0,711 0,674 0,671 0,664 0,637 0,654 0,707 

Liberec Region μ 9,326 9,292 9,146 9,182 9,247 9,308 9,392 

σ2 0,950 0,656 0,636 0,625 0,618 0,626 0,689 

Hradec Kralove Region μ 9,144 9,201 9,087 9,139 9,190 9,259 9,304 

σ2 0,640 0,671 0,623 0,625 0,620 0,636 0,661 

Pardubice Region μ 9,225 9,168 9,105 9,118 9,160 9,231 9,306 

σ2 0,920 0,697 0,642 0,660 0,642 0,650 0,704 

Vysocina Region μ 9,195 9,204 9,093 9,133 9,193 9,255 9,322 

σ2 0,754 0,691 0,616 0,640 0,605 0,627 0,685 

South Moravian Region μ 9,358 9,394 9,268 9,311 9,361 9,404 9,460 

σ2 1,028 1,025 1,028 1,027 1,018 1,014 1,009 

Olomouc Region μ 9,204 9,203 9,088 9,086 9,164 9,239 9,296 

σ2 0,661 0,659 0,632 0,657 0,651 0,633 0,719 

Zlin Region μ 9,077 9,139 9,075 9,065 9,149 9,215 9,277 

σ2 0,739 0,704 0,656 0,680 0,626 0,633 0,686 

Moravian-Silesian Region μ 9,196 9,251 9,220 9,233 9,262 9,290 9,345 

σ2 0,681 0,664 0,665 0,662 0,656 0,654 0,702 

Source: Own research 
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Tab. 5: Akaike and Bayesian information criteria values 

 

Region 

 

Crit. 

Year 

2009 2010 2011 2012 2013 2014 2015 

Capital 

Prague 

Region 

AIC 1,715,847 1,605,510 1,514,319 1,456,900 1,362,167 1,291,967 1,219,753 

BIC 1,715,870 1,605,533 1,514,342 1,456,923 1,362,191 1,291,990 1,219,776 

Central 

Bohemian 

Region 

AIC 544 ,441 536,317 528,511 543,060 546,067 556,645 577,484 

BIC 544,462 536,338 528,533 543,082 546,089 556,666 577,505 

South 

Bohemian 

Region 

AIC 297,991 296,670 282,364 284,622 285,256 289,311 303,276 

BIC 298,011 296,691 282,384 284,643 285,277 289,331 303,296 

Pilsen 

Region 

AIC 269,898 267,230 272,194 278,447 275,599 281,651 298,363 

BIC 269,919 267,250 272,215 278,468 275,619 281,671 298,383 

Karlovy 

Vary 

Region 

AIC 127,711 115,055 123,387 117,626 110,162 116,655 124,583 

BIC 127,730 115,074 123,406 117,644 110,180 116,674 124,602 

Usti 

Region 

AIC 348,582 336,708 336,174 334,146 324,956 331,734 350,898 

BIC 348,603 336,728 336,195 334,167 324,977 331,755 350,919 

Liberec 

Region 

AIC 231,143 185,448 183,454 183,282 183,845 187,689 203,032 

BIC 231,162 185,468 183,474 183,302 183,864 187,709 203,052 

Hradec 

Kralove 

Region 

AIC 240,158 250,588 239,702 242,212 242,731 249,249 258,341 

BIC 240,178 250,609 239,722 242,233 242,751 249,270 258,361 

Pardubice 

Region 

AIC 275,403 235,724 226,401 234,568 233,737 239,552 257,057 

BIC 275,423 235,744 226,421 234,588 233,757 239,572 257,077 

Vysocina 

Region 

AIC 238,726 228,425 213,311 222,088 215,872 224,336 241,838 

BIC 238,746 228,445 213,331 222,108 215,892 224,356 241,858 

South 

Moravian 

Region 

AIC 786,921 788,918 793,299 796,116 795,440 796,875 797,641 

BIC 786,943 788,940 793,321 796,138 795,462 796,897 797,663 

Olomouc 

Region 

AIC 255,008 261,376 260,425 274,584 279,522 280,684 313,825 

BIC 255,028 261,396 260,445 274,604 279,543 280,705 313,846 

Zlin 

Region 

AIC 289,572 282,403 271,177 279,996 265,977 270,105 288,029 

BIC 289,593 282,423 271,197 280,017 265,997 270,125 288,050 

Moravian-

Silesian 

Region 

AIC 581,796 574,637 578,439 579,575 578,706 580,905 613,021 

BIC 581,817 574,659 578,461 579,597 578,728 580,927 613,042 

Source: Own research 
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A probability model, usually representing a simple approximation of a rather complex 

empirical distribution and the knowledge of the development trend of its parameters allow for 

the estimation of the whole wage distribution for future research purposes. 

As we can see from Table 5, wage models for the capital Prague region show the 

lowest accuracy, while Karlovy Vary region with its lowest wage level indicates the best 

accuracy of wage models, the number of model parameters being implicated in both 

information criteria (AIC and BIC). The relationship between the model accuracy and the 

wage level in the respective region is obvious. It holds in principle that low model accuracy 

corresponds to a high wage level and vice versa. 

 

Conclusion 

The highest and lowest wages, respectively, are reported in Prague and Karlovy Vary regions, 

the average gross monthly wage amounting to 36,371 CZK in the former, compared to only 

24,119 CZK in the latter region in 2015. Residents of Central Bohemian, Pilsen and South 

Moravian regions receive relatively high wages, averaging 27,997, 27,013 and 27,051 CZK, 

respectively, in the same year. High-income regions, however, are also characterized by 

relatively wide gender wage gaps. 

The Czech Republic lagging behind economically, the purchasing power of its 

population currently reaches less than 60 per cent of the European average. Despite 

a 5 percent annual increase, the dividing line between Western and Eastern European 

countries still persists and will, unfortunately, likely to remain so for some time to come. 
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