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A WAVELET-BASED APPROACH TO BREAKPOINT 

DETECTION 

Milan Bašta 

Abstract 

Testing for the presence of breakpoints is a very important topic in the analysis of financial, 

economic or demographic time series. We present two wavelet-based approaches (statistical 

tests) to breakpoint detection available in the literature. One of the approaches is based on the 

maximal overlap discrete wavelet transform (MODWT), the other being based on the 

maximal overlap discrete wavelet packet transform (MODWPT). The latter approach was 

originally suggested as an improvement of the former one and consists of several steps. We 

use Monte Carlo simulations to estimate the probability of type I error for the latter approach 

with all the necessary steps included as part of the simulation, which mimics a real-life 

scenario. We show that the latter approach may not be valid under some circumstances and 

discuss the reasons for such a result. To our best knowledge, this (undesirable) property of the 

approach has not been documented in the literature. 
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Introduction 

The detection of breakpoints is a very important topic in the analysis of financial, economic 

and demographic time series. There are several wavelet-based approaches to breakpoint 

detection (see e.g. Whitcher, 1998, Gabbanini et al., 2004, Cho and Fryzlewicz, 2012, Killick 

et al., 2013, Nason, 2013). The test by Whitcher (1998) uses the maximal overlap discrete 

wavelet transform (MODWT). Employing the maximal overlap discrete wavelet packet 

transform (MODWPT), Gabbanini et al. (2004) extended the test by Whitcher (1998) in order 

to handle the case where a crucial assumption of the test by Whitcher et al. (1998) is not 

satisfied. Gabbanini et al. (2004) provide a Monte Carlo simulation in their paper to support 

the argument that their extension is superior to the original test by Whitcher (1998).  

However, we note that the simulation by Gabbanini et al. (2004) is performed under 

conditions which may often not be realistic (in real-life time series analysis). The goal of our 
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paper is to run the simulations under realistic conditions and explore whether the test by 

Gabbanini et al. (2004) is indeed a valid hypothesis test under such conditions. 

 The paper is organized as follows. Section 1 provides an introduction to the MODWT. 

Section 2 presents the test by Whitcher (1998). Section 3 introduces an extension of the test 

suggested by Gabbanini et al. (2004). In Section 4, we perform a Monte Carlo simulation 

where we explore the validity of the test by Gabbanini et al. (2004) and discuss the results. 

 

1 MODWT 

A detailed introduction to the MODWT is beyond the scope of this paper and the 

interested reader is referred to Percival and Walden (2006, Sec. 5). We briefly introduce the 

notion of the MODWT wavelet filters (Section 1.1) and of the MODWT wavelet coefficients 

(Section 1.2). These coefficients will be used in the test by Whitcher (1998) in Section 2. 

 

1.1 MODWT wavelet filters 

There are various types of wavelets such as the Haar, D(4) wavelets, etc. (see Percival 

and Walden, 2006). For each type of wavelet, a special set of linear filters is available. The 

so-called jth level (j = 1, 2, …) wavelet filter is denoted as {hj,l: l = 0, ..., Lj – 1}, where 

Lj = (2
j
 – 1)(L1 – 1) + 1 is the length of the filter, L1 being the length of the first level filter. 

{hj,l} is an approximate band-pass filter for the range of frequencies [1/2
j+1

, 1/2
j
]. 

 

1.2 MODWT wavelet coefficients 

Let us assume a stochastic process {Xt: t = ..., – 1, 0, 1, …}. The MODWT wavelet 

coefficients of level j (j = 1, 2, …) for {Xt}, denoted as {Wj,t: t = …, – 1, 0, 1, …}, are 

obtained by linear filtering {Xt} with {hj,l}, i.e.  


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Since {Wj,t} are obtained by linear filtering {Xt} with an approximate band-pass filter for the 

range of frequencies [1/2
j+1

, 1/2
j
], {Wj,t} capture the dynamics of {Xt} associated with the 

frequency range [1/2
j+1

, 1/2
j
]. 

Percival and Walden (2006) show that if {Xt} is stationary, {Wj,t} is stationary with a 

zero mean. Moreover, if {Wj,t} is downsampled by 2
j
, it becomes approximately uncorrelated 

for several types of processes – this happens if the spectrum of {Xt} is approximately flat in 
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the frequency range [1/2
j+1

, 1/2
j
]  (see Percival and Walden, 2006, Sec. 9). Consequently, if 

{Xt} is a stationary Gaussian process, {Wj,t} downsampled by 2
j
 can be considered a Gaussian 

white noise. 

In real-life applications, where only a portion {Xt: t = 0, …, N –1} of the process 

{Xt: t = ..., – 1, 0, 1, …} is available, the MODWT wavelet coefficients of level j cannot be 

obtained for times t = 0, …, Lj – 2 since this would require the knowledge of Xt for t < 0. 

Consequently, only {Wj,t: t = Lj – 1, …, N – 1} can be obtained (assuming that N ≥ Lj).   

 

2 Test for a variance change 

Based on the properties of the downsampled MODWT wavelet coefficients given in 

Section 1, Whitcher (1998), Whitcher et al. (2000) and Percival and Walden (2006) formulate 

a wavelet-based hypothesis test for a variance change (break) in a Gaussian time series 

{Xt: t = 0, ..., N – 1}. The idea of the test is that the MODWT wavelet coefficients of level j 

downsampled by 2
j
 are approximately a realization of a Gaussian white noise for many 

stationary Gaussian processes. Consequently, a testing approach similar to the one employed 

in Brown et al. (1975) and Inclan and Tiao (1994) can be adopted to test for a change in the 

variance of the downsampled MODWT wavelet coefficients. 

More specifically, let us assume the jth level MODWT wavelet coefficients 

{Wj,t: t = Lj – 1, ..., N – 1} for {Xt: t = 0, ..., N – 1}. Downsampling {Wj,t: t = Lj – 1, ..., N – 1} 

by 2
j
 and relabeling the original coefficients, the following sequence is obtained 

},,...,,{ ,2,1, jNjjj www         (2) 

where  

,,...,1,
)1(21,, jkLjkj NkWw j

j




      (3) 

 .2/)(1 j

jj LNN         (4) 

The following hypothesis test is performed to assess the significance of the change in variance  

},var{...}var{}var{: ,2,1,0 jNjjj wwwH       (5) 

},var{...}var{}var{...}var{: ,1*,*,1,1 jNjzjzjj wwwwH  
  (6) 
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where z* is an unknown index where the variance change occurred. Let the normalized 

cumulative sum of squares (of the downsampled MODWT wavelet coefficients) be defined as  
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Further, let the test statistic be defined as  
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Let the value of d for our actual sample be denoted as d*. One way to obtain the p-value of 

the test is to employ Monte Carlo simulations. Specifically, we simulate a Gaussian white 

noise process of length Nj and calculate the test statistic d. We repeat this Nsim times, yielding 

Nsim test statistics d1, ..., dNsim corresponding to individual runs of the simulation. The p-value 

of the test is approximated as a portion of instances where the test statistics from the Monte 

Carlo simulation were greater than or equal to d*. If the null hypothesis of no variance change 

is rejected, the jth level MODWT wavelet coefficients can further be used to estimate the time 

of the change (see Whitcher, 1998, Percival and Walden, 2006). 

3 MODWPT-based approach 

Gabbanini et al. (2004) suggest that there is a potential benefit in using the maximal overlap 

discrete wavelet packet transform (MODWPT) instead of the MODWT to test for the 

variance change. Consequently, we introduce the MODWPT
1
 in Section 3.1. The use of the 

MODWPT for the variance change detection is explained in Section 3.2 and Section 3.3. 

 

3.1 MODWPT coefficients 

                                                           
1
 A detailed introduction to the MODWPT can be found in Percival and Walden (2006, Sec. 6) 
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The (j, n) MODWPT coefficients for {Xt: t = …, – 1, 0, 1, …} (j = 1, 2, …; n = 1, …, 2
j
 – 1) 

are denoted as {Wj,n,t: t = …, – 1, 0, 1, …} and obtained by linear filtering {Xt} with a special 

linear filter which can be considered an approximate band-pass filter for the frequency range 

[n/2
 j+1

, (n + 1)/2
 j+1

], the length of the filter being Lj. {Wj,n,t} is, therefore, associated with the 

dynamics of {Xt} in the frequency range [n/2
 j+1

, (n + 1)/2
 j+1

]. There are two subscripts, 

namely j (level) and n, needed to distinguish various sets of the MODWPT coefficients. 

{Wj,n,t} (j = 1, 2, …; n = 1, …, 2
j
 – 1) shares analogous properties to those of {Wj,t} 

(j = 1, 2, …) mentioned in Section 1.2. Specifically, {Wj,n,t} is stationary with a zero mean if 

{Xt} is stationary. {Wj,n,t} is Gaussian if {Xt} is Gaussian. Further, if downsampled by 2
j
, 

{Wj,n,t} may become approximately uncorrelated – this happens if the spectrum of {Xt} is 

approximately flat in the frequency range [n/2
 j+1

, (n + 1)/2
 j+1

].  

In real-life data analysis, the (j, n) MODWPT coefficients for {Xt: t = 0, …, N – 1} are 

given as {Wj,n,t: t = Lj – 1, …, N – 1}.  

Since the properties of {Wj,n,t} (j = 1, 2, …; n = 1, …, 2
j
 – 1) are similar to those of 

{Wj,t} (j = 1, 2, …), the MODWPT coefficients can potentially be used in the hypothesis test 

of Section 2 instead of the MODWT coefficients. 

 

3.2 MODWPT coefficients for change detection 

The potential benefit of the MODWPT for the detection of variance changes stems from the 

following argument. Let the largest value of j used both in the MODWT and MODWPT 

analysis be denoted as J. The actual choice of J is dictated by the requirement to have at least 

“a few” coefficients at level J after downsampling by 2
J
. 

Consequently, there is a total of J sets of the MODWT wavelet coefficients (associated 

with frequency ranges [1/2
j+1

, 1/2
j
], for j = 1, …, J) and a total of (2

1
 – 1) + … + (2

J
 – 1) ≥ J 

sets of the MODWPT coefficients (associated with frequency ranges [n/2
 j+1

, (n + 1)/2
 j+1

], for 

j = 1, …, J; n = 1, …, 2
j
 – 1). When working with the MODWT sets only, it can happen that 

none of the MODWT sets is uncorrelated after downsampling by 2
j
 because the spectrum of 

{Xt} is not approximately flat in any of the frequency ranges [1/2
j+1

, 1/2
j
], for j = 1, …, J. 

However, the chance of having a flat spectrum in none of the ranges [n/2
 j+1

, (n + 1)/2
 j+1

], 

j = 1, …, J; n = 1, …, 2
j
 – 1, is lower. Consequently, it is more likely to find such a 

combination of j and n (j = 1, …, J; n = 1, …, 2
j
 – 1) for which the corresponding (j, n) 

MODWPT coefficients will approximately be uncorrelated after downsampling by 2
j
. Note, 

that the assumption of no correlation is an inherent assumption of the test for variance change.  
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3.3 The procedure 

Assuming an input time series {Xt = 0, …, N – 1}, we may follow the procedure proposed by 

Gabbanini et al. (2004) to test for a variance break in the time series: 

1.) We start with level j = 1.  

2.) For a given level j, we perform the Ljung-Box test (Ljung and Box, 1978) of no 

autocorrelation for the (j, n) MODWPT coefficients in turn for n = 1, …, 2
j
 – 1. If the null 

hypothesis of no autocorrelation is not rejected for at least one of the values of n, we 

select the optimal (j, n) MODWPT coefficients as those corresponding to the value of n 

associated with the lowest Ljung-Box test statistic and move to step 3.) below. On the 

other hand, if the null hypothesis of no autocorrelation is rejected for all n = 1, …, 2
j
 – 1, 

and if j < J, we increase the level j by one, i.e. j → j + 1 ≤ J, and repeat step 2.) with the 

new level; whereas if j = J, we select the optimal (j, n) MODWPT coefficients as those 

corresponding to the value of n associated with the lowest Ljung-Box test statistic and 

move to step 3.) below. 

3.) Employing the (j, n) MODWPT coefficients selected in the previous step, the hypothesis 

test for the variance change (break) is performed (Section 2). 

 

4 Monte Carlo simulation 

Gabbanini et al. (2004) perform a Monte Carlo simulation to estimate the probability of type I 

error of the above described MODWPT-based test for the variance change (break). However, 

the simulation run by Gabbanini et al. (2004) does not correspond to a real-life scenario since 

(in their simulation) Gabbanini et al. (2004) assume that the “optimal” doublet (j, n) is not 

selected by the procedure outlined in Section 3.3, but is known in advance (specifically, they 

assume the (2, 3) doublet for the ARMA process considered in their simulation).  

Consequently, employing the R software (R Core Team, 2014) and the wmtsa 

contributed R package (Constantine and Percival, 2013), we perform a simulation different 

from that given in Gabbanini et al. (2004) in the sense that we assume that the doublet (j, n) is 

not known in advance and has to be selected by the procedure outlined in Section 3.3. This is 

a more realistic scenario compared to the one considered by Gabbanini et al. (2004) in their 

simulation. Since the extent of the paper is limited, we will be interested only in the validity 

of the test (i.e. in the fact whether the probability of type I error matches the nominal 

significance level) and will illustrate the results for one specific ARMA process only. 
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4.1 Setting of the simulation 

We assume the following ARMA(1, 1) process: 

,5.09.0 11   tttt aaXX        (11) 

where {at} is a Gaussian white noise with unit variance. Further, we use D(4) wavelets (L1 = 4 

for D(4) wavelets). The Ljung-Box test is performed at a nominal significance level of 0.05 

with the lag parameter set to 3. Further, a nominal significance level of 0.05 is assumed in the 

test for the variance change outlined in Section 2.  

We estimate the probability of type I error for the following three scenarios: 

1. Doublet (j, n) = (1, 1) is chosen in advance to be used in the test, the selection 

procedure outlined in steps 1.) and 2.) in Section 3.3 not being performed. We have 

verified that (the stochastic process of) the (1, 1) MODWPT coefficients 

downsampled by 2
1
 is rather strongly autocorrelated at lag 1 for the above given 

ARMA process. Consequently, Scenario 1 is expected to provide a hypothesis test 

which is not valid (i.e. a test whose probability of type I error does not match the 

nominal significance level). 

2. Doublet (j, n) = (2, 2) is chosen in advance to be used in the test, the selection 

procedure outlined in steps 1.) and 2.) in Section 3.3 not being performed. We have 

verified that (the stochastic process of) the (2, 2) MODWPT coefficients 

downsampled by 2
2
 is only weakly autocorrelated for the above given ARMA process. 

Scenario 2 is thus expected to lead to an approximately valid hypothesis test. 

3. The test is performed as outlined in Section 3.3, i.e. it also includes the “selection 

steps”. We use J = 2 (for all the lengths of the input time series explored, see below). 

 

For each of the three scenarios, we run the simulation for the following lengths (N) of the 

time series: 32, 64, 128, 256, 512 and 1024. For each length, 10,000 simulations are 

performed. Subsequently, since the process is simulated under H0 (i.e. without any variance 

change), the probability of type I error can readily be estimated. The results are provided in 

Table 1, the estimated probabilities of type I error for the three scenarios being denoted as 

P(rej. H0, Scenario 1), P(rej. H0, Scenario 2) and P(rej. H0, Scenario 3). 

 

Tab. 1: Estimated probabilities of type I error (nominal significance level = 0.05) 

 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024 
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P(rej. H0, Scenario 1) 0.071 0.088 0.100 0.114 0.119 0.121 

P(rej. H0, Scenario 2) 0.053 0.048 0.052 0.059 0.063 0.061 

P(rej. H0, Scenario 3) 0.068 0.062 0.054 0.057 0.063 0.060 

Source: Own construction. 

As has been expected, the estimated probability of type I error deviates (largely) from the 

nominal significance level (0.05) for Scenario 1. On the other hand, the estimated probability 

of type I error is not far from the nominal significance level for Scenario 2. 

Interesting results (different from those for Scenario 2) have been obtained for Scenario 3. 

To elaborate on the results for Scenario 3, we can note that  

,),(),|.()3Scenario,.(
),(

00 
nj

njPnjHrejPHrejP     (12) 

where P(rej. H0 | j, n) is the estimated probability of type I error (for Scenario 3) conditional 

on doublet (j, n) being selected as the optimal doublet in the selection procedure, and P(j, n) 

denotes the estimated probability that doublet (j, n) will be selected as the optimal doublet in 

the selection procedure. Summation in Equation 12 runs over the following four doublets: 

(1, 1), (2, 1), (2, 2) and (2, 3). 

Table 2 provides the estimated probabilities P(rej. H0 | j, n) and P(j, n) for N = 32. It is 

interesting to note that (for N = 32) the conditional probabilities P(rej. H0 | 1, 1) and 

P(rej. H0 | 2, 2) differ from P(rej. H0, Scenario 1) and P(rej. H0, Scenario 2). Specifically, 

P(rej. H0 | 1, 1) is closer to the nominal significance level than P(rej. H0 | 2, 2) despite the fact 

that P(rej. H0, Scenario 1) is further from the nominal significance level than 

P(rej. H0, Scenario 2). Paradoxically, this suggests that (for N = 32) the (2, 2) doublet is “no 

more optimal” for performing the test conditional on the fact that the doublet was selected as 

the optimal one by the selection procedure. The conditional probabilities P(rej. H0 | j, n) are 

further weighted by P(j, n) in Equation 12. Since the Ljung-Box test has a low power 

when N = 32, it often fails to reject the null hypothesis of no autocorrelation for the (1, 1) 

doublet and the selection procedure often terminates with the (1, 1) doublet being selected as 

the optimal one. 

 

Tab. 2: N = 32, P(rej. H0 | j, n) and P(j, n) 

 n = 1 n = 2 n = 3 

j = 1 0.0652, 0.7872  X X 

j = 2 0.0779, 0.0719 0.0840, 0.0726 0.0747, 0.0683 
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Source: Own construction. 

Different results are obtained for N = 1024 (Table 3). Here, the selection procedure 

“never” selects the (1, 1) doublet as the optimal one and mostly chooses the (2, 2) doublet. 

This is not surprising since the Ljung-Box test has a high power when N = 1024 and is 

capable of selecting those coefficients that are truly the least correlated after downsampling. 

Moreover, for N = 1024, P(rej. H0 | 2, 2) = 0.0600, which is very close to 

P(rej. H0, Scenario 2) = 0.061. As a result, P(rej. H0, Scenario 3) is close to 

P(rej. H0, Scenario 2) for N = 1024. 

 

Tab. 3: N = 1024, P(rej. H0 | j, n) and P(j, n) 

 n = 1 n = 2 n = 3 

j = 1 NA , 0.0000 X X 

j = 2 0.0698, 0.0086 0.0600, 0.9900 0.0000, 0.0014 

Source: Own construction. 

Conclusion  

We have shown that the wavelet-based test for variance change proposed by Gabbanini et 

al. (2004) as an improvement of the test by Whitcher (1998) does not always guarantee a valid 

hypothesis test, the reason for this being the fact that the test by Gabbanini et al. (2004) is a 

complex multistep procedure and its performance has to be evaluated with all the steps 

included. If all the steps are included, the probability of type I error may differ from the 

nominal significance level and the test may become invalid. Consequently, we recommend 

selecting the optimal doublet in advance based on a priori information if possible rather than 

by the means of the Ljung-Box test. If the Ljung-Box test is indeed employed to select the 

optimal doublet, bootstrap methods can be recommended to explore the validity of the test. 
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