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THE HAWKES PROCESS AND TIME-VARYING JUMP 

INTENSITY IN FINANCIAL TIME SERIES 

Maciej Kostrzewski 

 

Abstract 

News might trigger arrivals of jumps in financial time series. The Bayesian JD(M)J model is 

applied to detect jumps. The Bayesian framework, founded upon the idea of latent variables 

and computationally facilitated with Markov Chain Monte Carlo methods, enables the 

detection of jumps and the analysis of their frequency.  

The presented methodology is illustrated with empirical studies employing both 

simulated and real-world datasets. A very intuitive observation is made, namely that higher 

posterior probabilities of jumps are inferred during the periods of higher absolute values of 

returns. A series of waiting times between two consecutive jumps is also of interest in the 

study. Periods of no jumps alternating with the ones of frequent jumps confirm the existence 

of jump clustering.  

The above results may prompt one to apply Hawkes processes to model the moments when 

jumps occur. The results of the maximum likelihood estimation of Hawkes process, again, 

indicate the jump clustering phenomenon. Information criteria point to a major superiority of 

the models featuring a stochastic intensity of jumps. 

Key words: jump clustering, Bernoulli jump-diffusion model, Hawkes processes, Bayesian 

inference, maximum likelihood estimation 
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Introduction 

Numerous studies indicate that many financial time series feature drastic occasional 

movements (referred to as jumps), although, obviously, whether to classify a given 

observation as a one featuring a jump or not typically hinges on some arbitrary definition of a 

jump itself. 

One of the most common group of models employed in modeling time series that 
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consist of “typical” (and continuous) changes and, simultaneously, allow for abnormal 

occasional shifts (jumps) is the class of jump-diffusion processes. In the current research, a 

very specific instance of these is under consideration, namely the Jump-Diffusion with M 

Jumps (henceforth JD(M)J) process, developed by (Kostrzewski, 2012a, 2012b, 2013a), and 

derived by discretizing some jump-diffusion process. To estimate the parameters of the 

JD(M)J model and to infer about jumps, we resort to Bayesian statistical framework, equipped 

with the MCMC methods 

The very term “jump clustering” – quite analogous to the one of “volatility clustering”, 

pervading the GARCH and SV literature (see, e.g. (Osiewalski, Pipień, 2004), (Pajor, 2009))– 

means that jump arrivals (or waiting times between two consecutive jumps) tend to cluster, 

i.e. if a given jump arrives in a short time since the previous one, then, most possibly, another 

jump will follow soon, too. Jump clusters have already been discussed in the financial 

econometrics literature – see, e.g., (Knight and Satchell, 1998), (Maheu and McCurdy, 2004), 

(Lee, 2012). The main idea is based on the assumption of a stochastic jump intensity which 

follows, e.g., a self-exciting process.  

In what follows, a very common (though still arbitrary) rule of classifying a given 

observation as a jump is adhered to, according to which a data point is diagnosed as a jump if 

the posterior probability of a jump exceeds 0.5. Then, a series of waiting times between two 

consecutive jumps is formed, enabling one to examine the jump clustering phenomenon. 

Furthermore, the series of  time moments of jumps is fit (via a maximum likelihood approach) 

with a Hawkes process, which provides a method of analyzing the time-variability of jump 

intensity. The latter also facilitates the detection of jump clusters. Such an (eclectic, indeed) 

approach is employed in this study to identify jumps and their clusters in the case of both 

simulated and real-world datasets.  

For relevant definitions and properties of the Hawkes processes we refer the reader to 

(Hawkes, 1971a, 1971b). The non-Bayesian estimation of the models founded upon these 

processes is discussed by (Ogata, 1978), (Daley and Vere-Jones, 2003), whereas the Bayesian 

approach is exposed by (Rasmussen, 2013). The Hawkes processes are applied to many fields 

including seismology, sociology, neuroscience and others, also including financial time series 

analysis (see (Ait-Sahalia, Cacho-Diaz and Laeven, 2013); (Maneesoonthorn, Forbes and 

Martin, 2014)). 

The contribution of the paper resides in performing an analysis of time-varying jump 

frequency and designing a visual method of detecting the jump clustering phenomenon. The 

use of the proposed methodology of detecting jumps, for some time series under 
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consideration, is particularly justified in the context of settling whether the jump clustering 

phenomenon should or need not be explicitly incorporated into the structure of some common 

jump-diffusion models. 

 

1 The JD(M)J model 

Consider a standard Wiener process  
0


ttWW , a Poisson process  

0


ttNN  with a 

constant intensity parameter 0 , and the sequence of independent random variables 

 
1


jjQQ . Let us assume that W , N  and Q  are mutually independent. Finally,  

0


ttSS  

denotes the price process of some risky asset. 

The logarithm of tS  is governed by a jump-diffusion process that constitutes the 

solution of the equation: 
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The process is built of two components: the (pure) diffusion part 
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   representing continuous variations in the series, and the (pure) 

jump component, ,
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 reflecting abnormal (extreme) movements in returns. The 

continuous price behavior between jumps is described by the geometric Brownian motion, 

W , while the arrival rate of jumps is described by the homogeneous Poisson process, N , and 

the jump magnitudes – by Q . 

The distribution of logarithmic rates of return,  
t

t

S

S ln , is an infinite mixture: 
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where kf  are some densities. Since the series given by (1) is infinite, the density is 

intractable. Therefore, consider the following finite approximation of (1): 
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The approximation restricts the number of jumps over any time interval   to M . The case of 
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0M  indicates no jumps over interval  . To obtain the conditional data density (given the 

vector of parameters  ) the approximation is normalized. 

Further considerations are restricted to the discrete time framework. Time series 

 nxxx ,...,, 21  is comprised of  
it

it

S

S

ix 1ln   observed at times ,..., 21 tt . Moreover, 

01   ii tt  is a fixed time interval between following observations. The specification, 

termed the JD  2 J model, is defined  by assuming a normal distribution for jQ : 
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1 exp
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Q xf , and setting 2M . The model is used to model series of daily 

logarithmic rates of return of S&P100 index, indicating 252
1 . The choice of M = 2 is 

explained in (Kostrzewski, 2013a). 

 

2 The Bayesian JD(2)J model 

A Bayesian statistical model is defined by the joint density:      ,,  pxpxp   where 

 nxxx ,...,1  is the observed data,   is the vector of unknown parameters,  xp  is the 

sampling density and  p  is the prior density. The inference rests upon the posterior density 

 xp   of   given data x . 

Under the JD(2)J specification the process depends on five unknown parameters 

 2,,,, QQ   , where           ,0,01,0,0,0R .  

When we analyze time series which is believed to be a trajectory of some JD(2)J 

process then one does not really know if a given data point observation has been generated by 

the pure diffusion or the jump-diffusion component. In other words, one cannot determine 

which component of the series in (2), i.e.  2,1,0 ,,
2

1
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 kkk QQ   is 

responsible for the observation. To manage the problem we introduce latent variables 

 nZZZ ,...,1  such that  2,1,0iZ  and   ji wjZP   where  ni ,...,1  and  2,1,0j . The 

value 0iZ  means no jump at (an interval)  it . The values 1iZ  and 2iZ  imply that a 

jump occurs at (an interval)  it  and its value distribution is  2,; QQ    and  22,2; QQ   , 

respectively. In other words, the events 1iZ  and 2iZ  correspond to a “smaller” and 

“larger” jump (in terms of absolute value), respectively. By means of Z one can detect times 

of jumps. Now, the Bayesian JD(M)J model – enhanced with latent variables Z – is given by:  
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     .,,,, ZpZxpZxp    

Formally, the occurrence of a jump is equivalent to the event 0iZ . Unfortunately, 

one does not observe iZ , but the posterior probability of a jump,  xZP i 0 , can be evaluated 

for each ni ,...,1 . Let us assume that a jump occurs at the i-th period if the probability 

 xZP i 0  exceeds an arbitrarily chosen value of 5.0 . The resulting series consisting of zeros 

and ones corresponding to such i’s that   5.00  xZP i  and   5.00  xZP i , respectively, 

is further employed in studying the jump clustering phenomenon. 

Posterior characteristics of all unknown quantities are calculated via the Markov Chain 

Monte Carlo (MCMC) methods, combining the Gibbs sampler, the independence and the 

sequential Metropolis-Hastings algorithms, as well as the acceptance-rejection sampling 

(Gamerman and Lopes, 2006). The details on the prior structure introduced into the model, 

the adopted MCMC methods and the results of estimation could be find in (Kostrzewski, 

2013a). 

 

3 The one-dimensional Hawkes model 

Let us consider the simple point process N in time domain. The simple point process N might 

be specified by conditional intensity     ,|,
1

lim
0

t
t

tttNE
t

t 





  where t  represents the 

history of the process N up to t and  tttN ,  is the number of points (jumps) in the interval 

 ttt , . The conditional intensity  t  is interpreted as the instantaneous rate of occurrence 

of events at time t. A well-known example of the simple point process is the (point) Poisson 

process. The homogeneous Poisson process counts events that occur at a constant rate  , 

whereas the non-homogeneous one counts events that occur at a variable (time-dependent) 

rate  t . An expected number of events (jumps) over a finite interval  T,0  is 

    dttTNE
T

 0
,0 . 

The Hawkes process is the simple point process. The one-dimensional Hawkes-type 

cluster model (Daley and Vere-Jones, 2003) for the times of events (jumps) considered in the 

paper is an example of the classical linear Hawkes process specified by the conditional 

intensity :  

       ,00 i
tt

t
ttgdsNstgt
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where   czk

k

K

k

ezazg 




1

1

 is usually referred to as the exciting function. Moreover 00  , 

0ka , 0c . These inequalities ensure that the conditional intensity is positive. The 

parameter 0  represents the background rate of occurrence, i.e. the intensity if there have 

been no past events. The parameters ka  and c control the level of clustering. K represents the 

order of the exciting function. Note that  t  is a stochastic process. The intensity of the 

process depends on the entire history and is self-exciting. The process has the clustering 

property which is a consequence of the self-excitation feature. Such processes are broadly 

employed in the literature on, e.g., the occurrence of earthquakes.  

It has been shown that under general conditions, the maximum likelihood estimates of 

simple point processes are consistent and asymptotically normal (see: (Ogata, 1978), (Daley 

and Vere-Jones, 2003)). 

 

4 Examples 

In this section we illustrate the methodology presented above. Two datasets are under 

consideration: a simulated and a real-world one. In both cases we perform Bayesian 

estimation of the model in question by means of the author’s own algorithms programmed in 

R (R Core Team, 2013), whereas the maximum likelihood estimates of the Hawkes model’s 

parameters are obtained via the R package ptproc (Peng, 2002). 

 

4.1 Simulation case study 

The series of n = 100 random data points generated from the uniform distribution over an 

interval [0,3] is under consideration. Simulated values are perceived as time moments of 

jumps occurring over three years. Note that this implies an average of thirty jumps per year. 

According to the way the data are generated, the jumps do not manifest themselves in clusters. 

Below we examine the results of fitting (via the maximum likelihood estimator) the simulated 

series with the Hawkes process under K = 1 (see Table 1). A close-to-zero value of the 

estimate of  indicates no jump clustering. What is more, 9.33ˆ
0  , which is close to the 

actual expected number of jumps per year. 

 

Tab. 1: The MLE estimates of the Hawkes process for K = 1 and simulation data 
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θ 0  a c 

MLE̂  33.9 2.505e-08 5.534 

Source: own elaboration. 

Introducing the parameters’ estimates into (3) yields the expression of jumps’ conditional 

intensity:    i

i

tt

tt

et




 
534.5810505.29.33 . Since the summation term in this formula is 

close to zero, the conditional intensity of jumps is almost constant:   9.330   t . We also 

estimated a model for K = 0 (i.e. the homogeneous Poisson process). According to the values 

of the Akaike information criterion calculated for both specification: –498.7524 for K = 1, and 

–502.7524 for K = 0, the data supports the simpler model structure. Figure 1 presents the time 

moments of jumps (top) and the corresponding values of (t) with indicated moments of 

jumps (bottom).  

 

Fig. 1: The time moments of jumps (top) and the values of the conditional intensity (with 

indicated moments of jumps; bottom) under K = 1 (simulated data) 
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Source: own elaboration. 

 

4.2 S&P100 Index 

To illustrate the methodology presented in the paper, we also analyze a series of daily 

logarithmic rates of return on the S&P100 Index over the period from March 5, 1984 through 

July 8, 1997. The series has already been employed by (Honore, 1998), who fits it with the 

Bernoulli jump-diffusion model by means of the maximum likelihood method, as well as by 

(Kostrzewski, 2013a). Quotations on the S&P100 Index have been downloaded from 

(EconStats, 2012).  
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In Table 2 values of the Akaike information criterion are presented for models 

featuring different values of K{0, 1, …, 4}. The results support the Hawkes process with 

K = 1. Table 3 displays the MLE estimates of the Hawkes process’ parameters (under K = 1) 

along with their standard errors. 
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Tab. 2: Akaike information criterion values for various K and the series of daily 

logarithmic rates of return on the S&P100 Index 

K 0 1 2 3 4 

AIC -106.49 -200.33 -140.27 -8.57 91.91 

Source: own elaboration.  

Tab. 3: The MLE estimates and standard errors of the Hawkes process’ parameters 

under K = 1 and the returns on the S&P100 Index 

  0  a c 

Estimates (MLE) 2.283 12.61 20.601 

Standard errors 0.536 0.491 8.56 

Source: own elaboration. 

Introducing the parameters’ estimates into (3) yields the expression of jumps’ conditional 

intensity:    
.61.12283.2

601.20 i

i

tt

tt

et




  The estimate 283.2ˆ
0   represents the background 

rate of occurrence, i.e. the intensity if there have been no past events. The assessed value of a: 

61.12ˆ a  indicates that immediately after a jump, the conditional intensity increases by about 

12.61 events per day and implies jump clustering. Note that in longer periods without jumps 

the conditional intensity   283.2ˆ
0   t . The MLE estimate of the constant intensity under 

the homogeneous Poisson process  ( 45.5ˆ  ) is twice as large as 0̂ . A larger value of ̂  may 

result from the occurrence of periods featuring higher intensity of jumps, these being not 

incorporated in the homogeneous Poisson process.  

 

Fig. 2: Logarithmic rates of return on the S&P100 Index (top), the time moments of 

jumps (middle) and the values of the conditional intensity (with indicated moments of 

jumps and a dotted line representing the value of 45.5ˆ  ; bottom) under K = 1 
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Source: own elaboration. 

Figure 2 plots the modeled series of logarithmic returns on the S&P100 Index, the 

time moments of jumps (middle) and the values of the conditional intensity (with indicated 

moments of jumps and a dotted line representing the value of 45.5ˆ  ; bottom) under K = 1. 

One can easily observe periods of no jumps alternating with the ones of frequent jumps, 

clearly indicating the time-variability of jump’s intensity and the jump clustering 

phenomenon. 

 

Final remarks 

Two major conclusions can be drawn from the research. Firstly, the jumps may manifest 

themselves in clusters (the jump clustering phenomenon). Secondly, as it follows from the 

latter it may be empirically more justifiable to allow for the stochasticity of the jump 

intensity, instead of restricting the intensity to be constant throughout. 

It is worth noting that even though the JD(2)J model – similarly as some other 

common specifications – does not account for any dependence structure in the occurrence of 

jumps, it is still informative (in the context of detecting jump clusters) to inspect the series of 

time moments when jump occur and the series of times elapsed between consecutive jumps, 

for it still can exhibit patterns suggestive of clustering. Specifically, via the approach 

proposed in the study it has been shown that the series of returns on the S&P100 exhibit 

clusters of jumps. The jump frequency analyses of some other time series, not mentioned 

here, also support the time-varying intensity of jumps and confirm the existence of jump 

clustering. Naturally, such results incline one to relax the assumption of a constant jump 

intensity and to allow for some (stochastic) time-variability of this parameter. 
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