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Abstract 

This year the PX index, the key price index of the Prague Stock Exchange, celebrated twenty 

years of its existence. Therefore, one could be indeed interested in analysing historical daily 

closing quotes of this stock index from an econometric point of view. In detail, the aim of this 

contribution is to introduce a particular class of discrete-time state space models and 

demonstrate that this class is appropriate for such a univariate financial time series. 

Particularly, it involves regularly applied econometric modelling instruments; it combines a 

local level model and a linear ARMA process together with conditionally heteroscedastic 

innovations. Moreover, the suggested modelling framework is examined in different settings 

of parameters. The final model is selected with respect to standard information and prediction 

criteria; it is further investigated and statistically verified by inspecting prediction residuals. 

Its empirical performance is compared with other commonly applied methods, i.e. with linear 

ARMA or benchmark GARCH models. 
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Introduction 

This year the PX index, the key stock index of the Prague Stock Exchange, celebrated twenty 

years of its existence. Thus, one could concentrate on exploring its historical evolution from 

an econometric perspective. In detail, this contribution introduces a particular class of 

discrete-time state space models that are able to describe historical daily closing quotes of the 

PX index. Such an analysis can find a broad spectrum of applications in portfolio and risk 

management or in technical analysis of various financial instruments. 

An extensive body of academically and practically oriented literature exists in this 

field of research. For instance, Al-Loughani & Chappell (2001) or Koutmos, Negakis, & 

Theodossiou (1993) elaborated on modelling stochastic behaviour of particular stock indices. 
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Vega & Smolarski (2012) constructed forecasts of the FTSE index reflecting movements of 

global stock markets. Last but not least, Sutcliffe (2006) comprehensively explained general 

properties of stock indices and delivered the list of related studies. 

This paper is organized as follows. Section 1 introduces the stock index PX in detail. 

Section 2 concerns methodological issues. In particular, it presents a discrete-time state space 

modelling class suitable for the financial time series of the PX index historical closing quotes. 

Moreover, it explains procedures of its calibration and statistical verification. Section 3 

reviews empirical results and analysed them. Section 4 compares the finally selected model 

with several simple schemes such as linear ARMA or GARCH models. 

 

1 PX index 

The PX index (ISIN XC0009698371) is an official market-cap weighted stock index 

composed of the most liquid shares traded on the Prague Stock Exchange. In particular, it is a 

price index of blue chips issues weighted by market capitalization calculated in real-time. 

Dividends are not considered. A new value of the PX index is delivered by a particular 

formula reflecting each single price change of index constituents. The maximum weight for a 

share issue is 20% on a decisive day. A portfolio of basic issues is variable and it can be 

restructured quarterly (Wiener Borse, 2014). 

The PX index was launched on 5th April 1994 (originally known as PX-50). Its base 

was composed of the fifty most important share issues operating on the Prague Stock 

Exchange. The opening base value was fixed on 1000. The number of basic issues has been 

variable since December 2001. In March 2006, the PX index was officially introduced. It took 

over the whole history of the replaced index PX-50 continuing in its development. In March 

2014, the PX base contained fourteen issues. The top five stocks had approximately 85% 

share of market capitalization in the portfolio. The majority of capitalization was allocated in 

banking, energy, and insurance sectors. Further details (including historical data) can be found 

on the official web pages of the Prague Stock Exchange (Prague Stock Exchange, 2014). 

Figure 1 presents all historical daily closing quotes of the PX index until 4th April 

2014 (i.e. 4952 observations). The minimal value 316 occurred on 8th October 1998 after the 

Russian financial crisis. The maximal observation 1936 was achieved 29th October 2007. It is 

visible that the crisis year 2008 was truly exceptional in terms of highly volatile prices. The 

augmented Dickey-Fuller test finding unit roots delivers statistics -1.134 with the declared p-

value 0.705, i.e. the presence of the unit roots cannot be rejected at 5% level (Tsay, 2010). 
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This feature concerning the considered time series is likely expectable. It should be taken into 

account e.g. by introducing the logarithmic returns of the PX index prices, which should lead 

to stationarity (the augmented Dickey-Fuller test statistics is -63.212 with the p-value 0.0001). 

 

Fig. 1: Historical closing quotes of the PX index. 
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2 State space model of the PX index 

The PX index historical quotes can be analysed by means of a particular state space modelling 

class that involves various regularly applied econometric modelling instruments altogether. 

Concretely, a local level model, a linear ARMA process, and conditionally heteroscedastic 

innovations are jointly considered in investigating the log returns of the PX index prices. 

In detail, the following form of the discrete-time state space model is proposed: 
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In the first (signal) equation of the system (1), rt denotes the log returns of the observed PX 

prices, μt stands for the local level, xt is the process fully described by the third equation in 

(1), θ0, ..., θr-1 are the real parameters, finally the innovation term is assumed to be a 

GARCH (Pg, Qg) type process. The second (state) equation in (1) represents the local level 

with the non-negative finite variances changing in time; the innovation term is again driven 

by a GARCH (Pµ, Qμ) type process. The third (state) equation in (1) specifies evolution of the 

process xt. It contains the real parameters φ1, ..., φr and GARCH (Px, Qx) type errors. More 
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precisely, the formulated model should be accompanied by the following set of artificial 

(state) equations: xt-r+i = xt-r+i, i = 1, ..., r-1. In summary, the whole considered state space 

modelling system (1) has r+1 state equations. Further, denote r = max (p,q+1), p, q are 

nonnegative integers, and put φj = 0 for j > p, θj = 0 for j > q, and θ0 = 1, respectively. All 

model disturbances, i.e. εt, η
μ
t, and η

x
t+1, are mutually and serially independent i. i. d. Gaussian 

random variables with zero mean and unit variance. They are also uncorrelated with the initial 

state vector (μ1, x1-r+1, ..., x1)
T
 which has an expected value a1 and a covariance matrix P1. 

Frequently, one sets a1 = 0 and P1 = κI, where κ is a large positive number. 

The model (1) can be rewritten more concisely as 
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  (2) 

According to (2), one can concludes that the proposed model (1) of the log returns rt is 

composed of the local level, the linear ARMA process, and the conditionally heteroscedastic 

disturbances with the additive error terms. It contains p+q+Pg+Pμ+Px+Qg+Qμ+Qx+3 

unknown parameters; however, this number can be reduced considering innovations with 

instant variances. Under some modelling circumstances, it can be comfortably calibrated by 

the numerically effective Kalman recursive formulas associated with the linear Gaussian state 

space models. The unknown parameters are then estimated by the corresponding maximum 

likelihood procedure (Commandeur & Koopman, 2007; Durbin & Koopman, 2001). 

Moreover, the calibrated model should be statistically verified in a proper way. The 

prediction residuals have the key role in this context. Particularly, the prediction residuals of 

the introduced model are given as 

,ˆ
~

ˆ
~

ˆ
011 trtrttt xxrv        (3) 

where the hats correspond to the best linear predictions of the associated unobservable states 

based on information accumulated by the observed time series until and including time t-1; 

the tildes denote the estimated counterparts of the unknown parameters. In respect to the 

theoretical background of state space methods (Durbin & Koopman, 2001), the prediction 

residuals (after their standardization) follow the Gaussian white noise with zero mean and unit 

variance. Therefore, one can test the adequacy of a fitted model by means of common 

statistical techniques (Commandeur & Koopman, 2007). 
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Furthermore, auxiliary residuals for the signal and states can be investigated for 

outliers and structural breaks. In particular, the auxiliary residuals are simply the smoothed 

standardized disturbances of the assumed state space model (1). It can be shown that they are 

autocorrelated (Durbin & Koopman, 2001). A relatively large smoothed observation (signal) 

error indicates the presence of an outlier while a relatively large smoothed state error indicates 

a structural break. In practice, the diagnostic auxiliary residual checking procedures are 

carried out using a conservative significance level since one is interested only in serious 

outliers and structural breaks. This is comparable with the issue of the studentized residuals in 

linear regression models (Durbin & Koopman, 2001). 

 

3 Empirical results 

The suggested model of the PX index expressed by the equations in (1) was examined in the 

framework of various settings of parameters p, q, and Pg, Pμ, Px, Qg, Qμ, Qx. All computations 

have been performed in EViews and R (Tusell, 2011; Van der Bossche, 2011). The calibrated 

models have been compared using: (i) the Akaike information criterion (AIC) and (ii) the root 

mean squared error of one-step-ahead predictions (RMSE). 

 

Fig. 2: Log returns of the PX index prices with the smoothed estimates delivered by (1). 
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According to these criteria, the model corresponding to the particular choice of 

parameters p=q=Pg=Pμ=Px=Qg=Qμ=Qx=1 was selected with AIC=-6.0776 and 

RMSE=0.01396. Figure 2 shows the log returns rt together with their smoothed estimates. 

The graph including the original series of the PX index prices with their smoothed estimates is 

not inserted since the original dataset and the delivered estimates are not distinguishable. 
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Figure 3 shows the standardized prediction residuals and the variance structure of the 

prediction residuals (compare with the GARCH variances in Figure 5). 

Furthermore, the fitted model has been verified thoroughly using frequent statistical 

methods. As was mentioned above, the standardized prediction residuals should follow the 

Gaussian white noise with zero mean and unit variance. Several econometric tests have been 

applied to examine these assumptions. 

 

Fig. 3: Standardized prediction residuals and variance structure of prediction residuals. 
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Source: Author. 

Firstly, the zero mean has been tested by the common t-test (resulting in the test 

statistics 0.0237 and the corresponding p-value 0.9811) and the Wilcoxon signed rank test 

(resulting in the test statistics 0.8266 and the corresponding p-value 0.4084). Thus, the null 

hypothesis of the zero mean is not rejected at the 5% level. 

Secondly, the assumption of the uncorrelated standardized prediction residuals has 

been investigated by the following statistical procedures (Tsay, 2010): (i) the Durbin-Watson 

test finding first order autocorrelations, (ii) the commonly used Ljung-Box test, (iii) the 

robustified portmanteau test with automatic lag selection (Escanciano & Lobato, 2009), and 

finally (iv) the BDS independence test, a portmanteau test examining the null against a variety 

of possible deviations from independence including linear dependence, non-linear 

dependence, or chaos. The resulting values of the test statistics are respectively: (i) 1.9555 

(indeed near 2), (ii) 5.8720 with the p-value 0.4377 (8 lags) and 19.3367 with the p-value 

0.1525 (16 lags), (iii) 2.4260 with the p-value 0.1193, and (iv) 0.0013 (the achieved p-value 

0.2169 for ε=1.5s, m=2, where s is the sample standard deviation of the standardized 
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prediction residuals), 0.0015 (the achieved p-value 0.3690 for ε=1.5s, m=3) or 0.0023 (the 

achieved p-value 0.3126 for ε=2s, m=20). 

It should be noted that the declared p-values corresponding to the Ljung-Box test were 

calculated with the more conservative choice of degrees of freedom (Van der Bossche, 2011). 

In particular, they were computed as k-m+1, where k is the number of lags in the Ljung-Box 

statistic and m=r+1 is the number of diffuse priors, see above. In general, this correction 

leads to more frequent rejecting of the null hypothesis. Moreover, the BDS independence test 

was applied under various settings. However, these resulted in analogous conclusions (see 

above). Concretely, different configurations of the embedding dimensions m and the 

proximity parameters ε were compared (Kanzler, 1999). In summary, there is no principal 

evidence to reject the null hypothesis of uncorrelated standardized prediction residuals at the 

5% level. 

Thirdly, the homoscedasticity of the standardized prediction residuals has been 

verified. The ARCH LM test (Tsay, 2010) with eight lags delivered the statistics 4.1149 

together with the corresponding p-value 0.8466, i.e. the null hypothesis cannot be rejected at 

the 5% level. 

Lastly, the Jarque-Bera test (Tsay, 2010) provided the statistics 829.6438 with the p-

value 0.0000, i.e. the Gaussian distribution of the standardized prediction residuals is rejected 

at the 5% level. Thus, one must rely on asymptotic features. 

Figure 4 investigates auxiliary residuals of the signal and state equations. These are 

relatively strongly autocorrelated; see above. The Ljung-Box statistics with eight lags are 

respectively: 41.5950 (for the signal series), 35419.6773 (for the state μt), and 590.4719 (for 

the state xt). Comparing Figure 3 and 4, one summarizes that there is an evidence of several 

questionable observations. For instance, it is possible to identify at least two important 

outliers in the left (and right) graph of Figure 4 (i.e. the first one in 1Q 1996 and the second 

one in 2Q 1999), or the problematic segment in the beginning of the PX index as it is visible 

in the centre graph of Figure 4. 

 

Fig. 4: Auxiliary residuals for the signal and the states μt and xt. 
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Source: Author. 

 

4 Model comparison 

The previously examined model can be compared with commonly applied modelling 

schemes. Particularly, one obviously considers a linear ARMA or benchmark GARCH model 

investigating logarithmic returns (Tsay, 2010). Firstly, assume the GARCH (1,1) model with 

normally distributed innovations, i.e. 

).1,0(  d.i.i. are  ,)( , 1

2

1 Ncrcr ttttttt       (4) 

Secondly, a standard linear ARMA (p,q) model with a nonzero mean is supposed (Tsay, 

2010); the appropriate order is identified using information criteria. 

Table 1 summarizes the results introducing several characteristics which verify the 

fitted models, i.e. the Akaike information criterion (AIC), the root mean squared error 

(RMSE), the Ljung-Box statistics with eight and sixteen lags (Q (8) and Q (16)), the ARCH 

LM test with eight lags (ARCH (8)), and finally the Jarque-Bera test statistics. Figure 5 

introduces the GARCH (1,1) variances; compare with Figure 3. 

 

Tab. 1: Results of the GARCH (1,1) model and the ARMA (1,2) model. 

Model AIC RMSE 
Q (8) 

(p-value) 

Q (16) 

(p-value) 

ARCH (8) 

(p-value) 

Jarque-Bera 

(p-value) 

GARCH (1,1) -6.0735 0.0141 
92.7204 

(0.0000) 

120.2721 

(0.0000) 

3.6693 

(0.8857) 

709.7203 

(0.0000) 

ARMA (1,2) -5.7063 0.0139 
14.6138 

(0.0121) 

30.6686 

(0.0038) 

1155.7688 

(0.0000) 

28987.2700 

(0.0000) 

Source: Author. 

 

Fig. 5: Estimated GARCH (1,1) variances. 
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It is visible that the model tested in Section 3 delivers results that are more suitable. 

On the one hand, the GARCH model ignores the conditional mean structure of the PX log 

returns. On the other hand, the linear ARMA model does not respect the conditionally 

heteroscedastic variances of the PX log returns. Consequently, the model (1) combining these 

two perspectives can be more appropriate in this modelling context. 

 

Conclusions 

The key price index of the Prague Stock Exchange was investigated by means of state space 

methods. In particular, a class of discrete-time state space models comprising the local level 

model, linear ARMA terms, and conditionally heteroscedastic innovations has been 

introduced. The suggested approach based on combining the mentioned econometric concepts 

altogether demonstrated its empirical performance. More precisely, it outperformed common 

modelling schemes, i.e. the benchmark GARCH (1,1) model and the linear ARMA model, 

since it has been able to jointly model the conditional mean and variance structure of the PX 

index log returns. Further research will be focused on possible extensions of the considered 

modelling class and on examining various analogical datasets applying this scheme. 

 

Acknowledgment 

This research was supported by the grant GA P402/12/G097. 

 

References 



The 8
th

 International Days of Statistics and Economics, Prague, September 11-13, 2014 

465 

 

Al-Loughani, N., & Chappell, D. (2001). Modelling the day-of-the-week effect in the Kuwait 

Stock Exchange: a nonlinear GARCH representation. Applied Financial Economics, 11(4), 

pp. 353-359. 

Commandeur, J., & Koopman, S. (2007). An introduction to state space time series analysis. 

New York: Oxford University Press. 

Durbin, J., & Koopman, S. (2001). Time series analysis by state space methods. New York: 

Oxford University Press. 

Escanciano, J., & Lobato, I. (2009). An automatic Portmanteau test for serial correlation. 

Journal of Econometrics, 151(2), pp. 140-149. 

Kanzler, L. (1999). Very fast and correctly sized estimation of the BDS statistic. Retrieved 

from: http://ssrn.com/abstract=151669 

Koutmos, G., Negakis, C., & Theodossiou, P. (1993). Stochastic behaviour of the Athens 

stock exchange. Applied Financial Economics, 3(2), pp. 119-126. 

Prague Stock Exchange. (2014). Retrieved from: http://www.pse.cz 

Sutcliffe, C. (2006). Stock index futures. (3rd ed.) Burlington, VT: Ashgate. 

Tsay, R. (2010). Analysis of financial time series. (3rd ed.) Hoboken: Wiley. 

Tusell, F. (2011). Kalman filtering in R. Journal of Statistical Software, 39(2), pp. 1-27. 

Van der Bossche, F. (2011). Fitting state space models with EViews. Journal of Statistical 

Software, 41(8), pp. 1-16. 

Vega, J., & Smolarski, J. (2012). Forecasting FTSE Index Using Global Stock Markets. 

International Journal of Economics and Finance, 4(4), pp. 3-12. 

Wiener Borse. (2014). Retrieved from: http://www.wienerborse.at/ 

 

Contact 

Radek Hendrych 

Charles University in Prague 

Faculty of Mathematics and Physics 

Dept. of Probability and Mathematical Statistics 

Sokolovská 83, 186 75 Prague 8, Czech Republic 

Radek.Hendrych@mff.cuni.cz 


