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Abstract 

The present paper demonstrates the applicability of a bootstrap approach in a regression 

analysis. Bootstrapping is an approach to statistical inference adherent to computationally 

intensive statistical techniques. Since it does not require the classical distributional 

assumption, the bootstrap can provide more accurate inferences when the data are not well 

behaved. The Ordinary Least Squares (OLS) method, often used to estimate the parameters of 

regression models in the bootstrap procedure, is extremely sensitive to outliers and non-

normality of errors. The robust bootstrapping method replaces the classical bootstrap mean 

and standard deviation with robust estimates by using robust regression estimates with a high 

breakdown-point. Values of the indicator of tertiary education attainment in the European 

countries depend on many indicators of the general economic background, employment, etc. 

The values of these indicators vary between the European countries and, consequently, the 

occurrence of outliers can be dealt with in an analysis. The research results obtained by using 

bootstrapping, OLS and robust regression analysis are compared. 
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Introduction  

The regression analysis is the most commonly used statistical tool for analyzing dependences. 

The classical statistical approach – the least squares method (OLS) – can be highly 

unsatisfactory due to the presence of outliers that are likely to occur in an analysis of data 

from the European countries. In such a case, the robust regression becomes an acceptable and 

useful tool, since it provides a good fit to the bulk of the data, the outliers being exposed 

clearly enough. The aim of this paper is to verify the applicability of the bootstrapping 

(resampling) technique in both OLS and robust regression. 

 



The 7th International Days of Statistics and Economics, Prague, September 19-21, 2013 

155 
 

1 The principle of bootstrapping in regression 

The bootstrap was introduced by (Efron,1979). The essence of the bootstrapping method is to 

create a large number of sub-samples by randomly drawing observations with replacement 

from the original dataset. Each element of the original dataset is selected for the bootstrap 

sample with probability 1/n, mimicking the original selection of the bootstrap sample from the 

original one. We repeat this procedure a large number of times (R), receiving R artificial 

samples of n observations from the data in the original sample. These artificial sub-samples 

are termed as bootstrap samples, being used to recalculate the estimates of the statistic (e.g. 

regression coefficients). The resampling distribution of a statistic is then constructed 

empirically by resampling from the sample. The bootstrap gives slightly different results 

when repeated on the same data. (More see e.g. in (Cole,1999), (Efron,1993), (Stine, 1990). 

We consider a linear regression model Y= X β + ε, where Y = (Y1,…,Yn)’ is a response 

variable, X )( 
ij

x ;  i = 1,…, n; j = 1,…p; is a design matrix,   = (1,…,p)’ is a vector of 

unknown regression coefficients (matrix of regressors) and   = (1,…,n)’ is a vector formed 

by an initial part of the sequence of independent identically distributed residuals distributed 

according to the distribution F, n being the sample size. There are two general ways to 

bootstrap a regression (see in detail e.g. in (Stine, 1990),(Fox, 2002)). In our analysis, random 

x-resampling (case resampling) was used. This approach treats the regressors as random, 

potentially changing from sample to sample, and selects bootstrap samples directly from the 

observations. Thus, we get a sample of n observations nixyz
iii

,...,1);,(  , the data being 

ready for a resampling-with-replacement procedure, the resample size having to be equal to 

that of the original data set. Then the regression coefficient is computed from the resample in 

the first step. We repeat this routine R times to get a more precise estimate of the bootstrap 

distribution which represents an ''empirical bootstrap distribution'' of sample regression 

coefficients .,...,2,1, Rb
b

 . The average of the bootstrapped regression coefficients 

b
 is an 

estimate of   ( ̂ ). A measure of accuracy for ̂  is the standard error SE (a boot of estimated 

bootstrap variance of ( ̂ ) and the bias of the estimator ̂ which can be estimated as the 

difference between an average bootstrapped value of the regression coefficient and its 

original-sample value. There are two basic approaches to constructing bootstrap confidence 

intervals: the bootstrap percentile interval (EP) based on the empirical quintiles of bootstrap 

regression coefficients bb  and the bias-corrected, accelerated percentile interval (BCα) with 

correction factors for lower and upper percentiles of the statistic β based on jackknife values 
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of the statistic β (see e.g. in (Cole, 1999), (DiCiccio & Efron, 1996), (Freedman, 1981), 

(Efron, 1993, 2000). 

The classical approach to bootstrapping regression is based on the OLS method which 

assumes that the error terms are normally distributed. The classical bootstrap procedure is 

sensitive to outliers, i.e. the points deviating relative to the response variable as well as those 

distant from the bulk of the data relative to the factor space (so-called leverage points). 

However, the classical bootstrap is extremely sensitive to influential points which are deviated 

simultaneously both in the explanatory variables and the response variable respectively. 

The robust bootstrapping method modifies the classical OLS bootstrap algorithm by 

using robust regression estimates with a high breakdown-point, e.g. the MM procedure with 

an initial S-estimate or LTS-estimates (see more details in (Hamadu, 2012), (Silibian-Barrera 

& Zamar, 2002). 

 

2  Robust regression methods and diagnostic tools 

MM-estimates (proposed by (Yohai, 1987)) are defined by a three-stage procedure. At the first 

stage, an initial regression estimate is computed; it is consistent, robust, with a high 

breakdown-point, but not necessarily efficient. At the second stage, an M-estimate of the error 

scale is computed, using residuals based on the initial estimate. Finally, at the third stage, a 

(final) M-estimate of MM estimates represents a combination of high breakdown value 

estimation and an efficient estimate of the regression parameters based on a proper 

redescending -function which is the derivative of a proper loss function ρ (ψ=ρ’). (See more 

details in (Yohai, 1987),(Rousseeuw  & Leroy,2003)). 

The least trimmed squares (LTS) estimator proposed by Rousseeuw in 1984 is 

obtained by minimizing 


h

i
ir

1

2 , where ( )ir  is the ith order statistic among the squared residuals 

written in the ascending order, h being the largest integer between (n/2) and (3n+p+1)/4 and p 

being the number of predictors. The LTS regression is a reliable data analytic tool that may be 

used to discover regression outliers both in simple and multivariate situations. A more 

detailed description can be found e.g. in (Ruppert,D. & Carroll, R.J.,1990). (Rousseeuw, 

2003), (Fox, 2002). 

Various numerical and graphic diagnostic methods for detecting outliers, leverage 

points and influential observations can be employed. In this paper, the following ones have 

been used: Residuals associated with LTS regression, Standardized, Studentized residuals (a 
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type of standardized t distribution residuals with n-p-2 Df), Robust distance, Diagnostic plots, 

Normal Q-Q plot of the standardized residuals, Plot of Kernel density of residuals. 

For the selection of a proper regression model, the following diagnostic tools were 

used: The significance robust tests: robust t-test, robust F-tests, robust Wald test and the 

Robust selection information criteria: Robust Akaike's Information Criterion (AICR),Robust 

Bayesian Information Criterion (BICR) and Robust Final Prediction Error (RFPE).  

 

3  Results of Analyses and Discussion 

The tertiary educational attainment (TEA) indicator is constructed as a share of the population 

aged 30-34 years who have successfully completed tertiary level education (Eurostat). This 

indicator is one from the set of Europe 2020 indicators used by the European Commission to 

monitor headline targets of a strategy for the next decade – Strategy for smart, sustainable and 

inclusive growth. Education plays a key role in Europe 2020 and particularly in the Inclusive 

Growth agenda. The value of TEA in the European countries depends on numerous indicators 

of the general economic and social background, employment, etc. 

There are two robust models which fulfil the aforementioned criterion. Both the 

models include a general government expenditure on education (GEE) variable (based on 

COFOG classification) as a percentage of GDP. Two fitting models were found, the first one 

including GDP per capita as a second explanatory variable, the other one containing the net 

national investment (NNI) instead. (See the goodness-of-fit test of this model in Table 1.) 

In the first regression TEA~ GEE + GDPc model, the robust diagnostics identified 

four leverage points (2 Belgium, 4 Denmark, 15 Luxembourg, 22 Romania), but none of them 

was also an outlier. Due to the absence of influential points, classical regression modelling 

can be considered fully appropriate. Table 1 shows that the regression parameters in both LS 

and robust model are the same. (As a matter of course, t-test statistics are not the same but 

very similar.) Robust diagnostics (see Table 2) revealed two influential points (7 Ireland and 

15 Luxembourg) in the second suitable regression TEA~ GEE+NNI model. The same can be 

seen from graphical diagnostics in Figures 1 and 2.  
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Tab. 1: Final regression models for TEA - Goodness-of-fit tests 

Outliers/Lev.points Robust MM fit / LS fit R-sq. AICR BICR Deviation RFPE 
-; 
2,4,8,15.22 

-2.921+5.063 GEE +0.089 GDPc 
-2.921+5.063 GEE +0.089 GDPc 

0.540 
0.541 

21.356 27.655 1078.06 14.182 

7,15; 
3,5,6,7,15,17.21 

-104.94+4.116 GEE + 1.385 NNI 
12.574 +5.786 GEE -0.133 NNI 

0.532 
0.408 

22.289 29.579 1050.56 14.263 

Source: data EUROSTAT, author’s own calculations 

 

Tab. 2: Robust diagnostics for TEA~ GEE+NNI model 

Observation 
Mahalanobis 

distance 
Robust MCD 

Distance 
Leverage 

Stand.Robust 
Residual 

Outlier 

3 Czech Republic 
5 

1.2974 3.9202 * 0.3989  

5 Germany 1.6744 2.1311 * -0.3680  

6 Estonia 1.1599 2.9332 * 0.9970  

7 Ireland 1.6386 5.2813 * 4.0653 * 

15 Luxembourg 3.8325 11.0645 * 6.7694 * 

17 Malta 0.7066 2.8946 * -0.6784  

22 Romania 0.9511 2.8355 * -1.0292  

Source: data EUROSTAT, author’s own calculations 

 

Fig. 1: Diagnostic Graph (TEA~ GEE+NNI) Fig. 2: Normal Q-Q Plot  

 
Source: data EUROSTAT, author’s own elaborations        Source: data EUROSTAT, author’s own elaborations 
 

For these two selected regression models, both classical and robust bootstrapping was 

performed with a various number of resamplings (R = 500, 1000 and 1500). For each of the 

sets, the boostrap mean as well as the standard deviation (SE), bias and both empirical 95% 

EP and 95% BCa confidence intervals were computed.  

In order to compare the results of bootstrap regressions, OLS and robust MM methods 

were employed as well. Values of regression coefficients, SEs, t-tests, p-values for t-tests, R-

squares, 95% confidence OLS intervals and 95% confidence MM-intervals for comparison 
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with robust bootstrapped ones were calculated. Robust regression was taken as a tool to 

identify outliers. 

All results of analyses were obtained using S-Plus 6.2 and SAS 9.1 systems. The 

results of all analyses are presented in Tables 3 (for TEA~ GEE + GDPc model) and 4 (for 

TEA~ GEE+NNI model). Since there are numerous graphs, only histograms for the 1000 

bootstrap replications of data sets parameters are presented (see Figs. 3-6). 

Tab. 3: Classical bootstrap regression, robust bootstrap regression, OLS and MM 

 regression for TEA~ GEE+GDPC model 

 
 Observed Bias Mean SE 95% EP 95% BCa 

Bootstrap 
R=500 

intercept -2.9209 -0.6004 -3.5212 6.0657 -17.270;6.585 -16.011;7.073 

GEE 5.0630 0.0058 5.0688 0.9878 3.210;7.034 3.166;7.025 

GDPC 0.0888 0.0057 0.0945 0.0365 0.032;0.187 0.0187;0.161 

Robust 
Bootstrap 

R=500 

intercept -2.9209 0.2434 -2.6774 11.3230 -23.944;25.461 -21.618;30.9362 

GEE 5.0630 -0.3311 0.1134 0.0896 -0.048;8.0619 0.1912;8.4185 

GDPC  0.0888 0.0246 0.1134 0.0896 -0.0244;0.3475 -0.0892;0.2457 

Bootstrap 
R=1000 

intercept -2.9209 -0.5845 -3.5054 5.7524 -16.646;6.8798 -15.4893;-7.1924 

GEE 5.0630 -0.0043 5.0587 0.9705 3.0431;6.9966 2.9120;6.8672 

GDPC 0.0888 0.0065 0.0953 0.0409 0.0216;0.1990 0.0128;0.1881 

Robust 
Bootstrap 
R=1000 

intercept -2.9209 0.3462 -2.5747 11.022 -24.719;25.032 -22.1503;29.6595 

GEE 5.0630 -0.3894 4,6736 1,8506 -0.2242;7.7333 0.1641;7.7739 

GDPC  0.0888 0.0277 0,1165 0,0954 0.0051;0.4055 -0.0377;0,2926 

Bootstrap 
R=1500 

intercept -2.9209 -0.6927 -3.6136 5.8770 -17.289;7.196 -14.866;8.4201 

GEE 5.0630 0,0075 5.0705 1.0031 2.9495;7.0549 2.8866;6.9617 

GDPC 0.0888 0,0061 0.0949 0.0390 0.0222;0.1918 0.0054;0.1723 

Robust 
Bootstrap 
R=1500 

intercept -2.9209 0.4523 -2.4685 10.900 -26.425;19.627 -26.453;19.6215 

GEE 5.0630 -0.4202 4.6428 1.8700 -0.401;8.0981 -0.4926;8.5323 

GDPC  0.0888 0.0291 0.1178 0.1020 -0.0060;0.4261 -0.032;0.3511 

  Parameter SE T p-value 95 % conf.interval 

OLS 
R-sq 

0.5413 

intercept -2.9209 7.4184 -0.3937 0.6973 -18.2317; 12.3900 

GEE 5.0630 1.2331 4.1059 0.0004 2.518; 7.6080 

GDPC 0.0888 0.0329 2.6998 0.0125 0.0209; 0.1567 

MM 
R-sq 

0.5400 

intercept -2.9209 8.4535 -0.3555 0.7327 -17.4607; 11.6190 

GEE 5.0630 1.4057 3.6018 0.0014 2.6462; 7.4799 

GDPC 0.0888 0.0375 2.3679 0.0263 0.0243;0.1532 

Source: author’s own calculations 

In TEA~ GEE+GDPC model, the assumption of normality of errors is met. It is 

known that if errors are normally distributed, the OLS estimator will have a minimum 

variance among all unbiased estimators. The best results are provided by the classical 

bootstrap based on the OLS method. Standard deviations (SE) are even lesser than those 

acquired by the OLS method, confidence intervals being narrower. Since the classical 
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bootstrap produces better results than the robust one, it ought to be given due preference. Both 

classical and robust bootstrap distributions of both the intercept and regression coefficient are 

adequately symmetric (see Figs. 3 and 4). 

 
Fig. 3  Histograms for classical replications of regression coefficients for  

TEA~ GEE+GDPc model (R=1000) 

 
Source: author’s own elaborations 
 

Fig. 4  Histograms for robust replications of regression coefficients for  

 TEA~ GEE+GDPc model (R=1000) 

 
Source: author’s own elaborations 
 

In TEA~ GEE+NNI model, two influential points were identified (seven leverage 

points and two outliers). OLS methods fail totally, NNI indicator having an opposite sign. The 

results are distorted, which means that in this case the linear regression model is absolutely 

inapplicable. The robust MM regression provides the best results, the smallest SEs and the 

narrowest confidence intervals. The bootstrap distribution in this case might be a very poor 

estimator of the distribution of regression estimates, since the proportion of outlier points in a 

bootstrap sample can be larger than the fraction of contamination in the original sample. In 

bootstrap, both outlying and non-outlying observations have the same chance of belonging to 

any bootstrap since such samples are drawn from the original sample with replacement. 
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Tab. 4:  Classical bootstrap regression, robust bootstrap regression, OLS and MM  

regression for TEA~ GEE+NNI model 

 
 Observed Bias Mean SE 95% EP 95% Bca 

Bootstrap 
R=500 

Intercept 12.5737 -19.756 -7.1828 46.2194 -121.727;44.01 -100.428;50.802 

GEE 5.7860 -0.7565 5.6115 1.1558 3.354;7.8077 3.5977;8.2898 

NNI -0.1330 0,2479 0.1149 0.5999 -0.5239;1.6143 -0.5987;1.3528 

Robust 
Bootstrap 

R=500 

Intercept -104.94 30.0766 -74.864 75.456 -217.66;59.309 -225.12;49.8567 

GEE 4.1163 0.1878 4.3040 2.0360 -0.964;7.4567 -3.9912;6.7726 

NNI 1.3846 -0.3602 1.0240 0.9700 -0.624;3.2632 -0.537;3.4355 

Bootstrap 
R=1000 

Intercept 12.5737 -19.740 -7.166 48.3005 -125.62;42.439 -108.061;49.544 

GEE 5.7860 -0.225 5.562 1.2473 2.9358;8.0817 3.5530;8.6437 

NNI -0.1330 0.251 0.118 0.6283 -0.5288;1.6985 -0.6308;1.4010 

Robust 
Bootstrap 
R=1000 

Intercept -104.94 32.6266 -72.313 73.0623 -187.607;61.01 -227.623;46.913 

GEE 4.116 0.2986 4.4149 2.1059 -0.757;7.5976 -3.929;6.6649 

NNI 1.385 -0.3997 0.9879 0.9389 -0.662;2.4691 -0.488;3.4677 

Bootstrap 
R=1500 

Intercept 12.5737 -16.442 -3.8687 44.4225 -118.67;43.549 -96.766;51.4324 

GEE 5.7860 -0.1953 5.59071 0.5721 3.3782;7.9016 3.8087;8.6007 

NNI -0.1330 0.2098 0.0768 0.5721 -0.5503;1.5604 -0.6464;1.3017 

Robust 
Bootstrap 
R=1500 

Intercept -104.94 33.2008 -71.739 73.1015 -197.06;60.658 -222.77;47.0736 

GEE 4.116 4.116 0.3873 2.0767 0.712;8.0660 -3.677;6.8228 

NNI 1.385 -0.4127 0.9719 0.9401 -0.675;2.3545 -0.507;3.4562 

  parameter SE t p-value 95 % conf..interval 

OLS 
R-sq 

0.3691 

Intercept 12.5737 21.4027 0.5875 0.5624 -31.599;56.748 

GEE 5.7860 1.4429 4.0101 0.0005 2.8081;8.7639 

NNI -0.1330 0.2710 -0.4907 0.6281 -0.6922;0.4263 

MM 
R-sq 

 0.5320 

Intercept -104.940 26.8624 -3.9066 0.0007 -156.894;-52.986 

GEE 4.1163 1.0427 3.9477 0.0006 2.0996;6.1329 

NNI 1.3846 0.3440 4.0253 0.0005 0.7193;2.0498 

Source: author’s own calculations 

 

Fig. 5  Histograms for classical replications of regression coefficients for TEA~ GEE+NNI model 

(R=1000) 

 
Source: author’s own elaborations 
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Fig. 6  Histograms for robust replications of regression coefficients for TEA~ GEE+NNI model 
(R=1000) 

 
Source: author’s own elaborations 
 

The bimodality in the histograms of regression coefficients confirms the presence of 

outliers. Robust bootstrap distributions of the regression coefficient are more tightly 

concentrated than those of OLS bootstrap estimators, being considerably heavy-tailed due to 

the existence of outliers. 

 

Conclusion 

In TEA~ GEE+GDPC model, the assumption of normality of errors was met and only 

leverage points were identified. The classical bootstrap produces better results than the robust 

one, thus the classical bootstrap could be preferred. SEs are even lesser than in OLS fits and 

confidence intervals are narrower. Both the classical and robust bootstrap distributions of the 

regression coefficient are adequately symmetric.  

In TEA~ GEE+NNI model, seven leverage points and two outliers were identified. 

The OLS method totally fails, the NNI indicator has the opposite sign. The classical bootstrap 

provides better results than the OLS method, the sign of the regression coefficient for NNI 

parameter being right. The bootstrap – both classical and robust – provides regression 

coefficient estimators with broader confidence intervals than the MM regression owing to the 

fact that the outlier proportion in bootstrap samples can be higher than in the original dataset. 

The robust MM regression provides the best results, with the smallest SEs and the narrowest 

confidence intervals. 
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