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REGIONAL INCOME DISPARITIES IN CENTRAL-EASTERN 

EUROPE – A MARKOV MODEL APPROACH 

Anna Decewicz 

 

Abstract 

The paper concerns analysis of regional income disparities and their dynamics by use of 

Markov models including spatial effects. The main objective is to examine spatial interactions 

between regions by means of  a non-homogeneous Markov model with transition probabilities 

conditioned by variables reflecting region’s position in its neighbourhood. The attention 

focuses on disparities of GDP per capita related to European average to include differences in 

regional economies value and their levels of well-being. Data referring to GDP per capita on 

NUTS3 in 2000 – 2010 are taken from Eurostat regional database and national statistic 

offices. Analysis starts with studying cross-sectional distribution of regional GDP per capita 

by means of parametric and non-parametric estimation. Regional spatial effects are measured 

by Moran spatial statistics, using wage matrices of k-nearest neighbours and maximal 

distance. Several Markov models are estimated to examine dynamics of GDP and identify 

patterns of income distribution evolution and to explain how neighbourhood affects region’s 

current and future position.  

Key words:  regional income, Markov chain, spatial effects 

JEL Code:  C23, R11 

 

Introduction 

The aim of this paper is to analyze disparities between regions of “new” members of 

European Union by use of Markov models. Markov models are present in literature 

(Fingleton, 1007, Magrini, 1999, Le Gallo, 2004) as an alternative to econometric modelling 

of convergence giving the possibility of predicting future income distribution, limit 

distribution and the speed of convergence (or perhaps divergence). The main purpose of the 

paper is an attempt to incorporate spatial effects between regions directly into a Markov 

model. 

The attention is focused on disparities and convergence of Gross Domestic Product per 

capita to include differences in regional economies value and their levels of well-being. Data 

taken from Eurostat regional database and national statistic offices include annual GDP (as a 
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percentage of UE27 and percentage of up-regional average) at NUTS3 level for 20002010 

period for 211 regions located in Bulgaria, Czech Republic, Estonia, Hungary, Latvia, 

Lithuania, Poland, Romania, Slovenia and Slovakia. 

The analysis begins with studying cross-sectional distribution of regional GDP. In 

order to study the dynamics of GDP distribution a non-homogeneous Markov model 

incorporating spatial dependence between regions is constructed. In the Markov model 

transition probabilities depend on variables describing region’s current position in its 

geographic neighbourhood (i.e. the regional GDP is related to waged average of its nearest 

neighbours or up-regional average). This is a modification of previous approach called 

“spatial” Markov chain (Rey, 2001, Le Gallo, 2001) in which spatial effects and other factors 

impacting transition probabilities were taken into account by estimating several transition 

matrices for different groups of regions distinguished by the initial class to which their 

neighbours belong. 

 

1 Modelling convergence by Markov models 

 

1.1. Discrete Markov model 

By definition (Bhat, 1984) Markov chain with state-space  rS  ,...,2 ,1  is a stochastic 

process   0nnX  with memory-less property: 

Siiji n   01,...,,,    (1) 

)()|(),...,,|( 100111 npiXjXPiXiXiXjXP ijnnnnnn   , 

meaning that transition probabilities depend only on the last state observed. Homogeneous 

Markov chain is a process with time-stable transition probabilities, usually noted in transition 

matrix  ijpP . With known transition matrix it is possible to predict future distribution, 

according to formula 

Pdd nn 1 ,   (2) 

where  nrnn dd ...1d   denotes distribution at time �, )( iXPd nni  . A Markov chain 

is called ergodic if its limit (also called ergodic or stationary) distribution exists and does not 

depend on the initial distribution.  

Applying Markov chains in modelling income convergence consists in defining a 

finite number of states referring to a set of classes distinguished basing on income distribution 
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among regions. Transition probabilities of a homogeneous Markov chain are estimated from 

panel data with formula 

i

ij
ij

n

n
p ˆ ,   (3) 

with ijn  denoting observed number of transitions ji   and in  number of visits in state i. 

Convergence is evident when the probability mass in ergodic distribution is concentrated 

around one state, otherwise divergence or club convergence may be considered. Modifications 

of this simple model including spatial effects (Rey 2001, Le Gallo, 2004) consists in 

decomposition of transition matrix in a way enabling to extract transition probabilities 

conditioned by a class to which region’s neighbours belong.  

The usual assumption in modelling convergence by means of Markov chain is models’ 

homogeneity, however it seems obvious that transition mechanism may be time and cross-

sectional varying. Heterogeneity may be included by means of treating transition probabilities 

as functions of some explanatory variables or studying parameters’ stability. In order to 

include the impact of explanatory variables on transition probabilities into a discrete model 

each row of a transition matrix should be estimated by an ordered logit model with r classes 

corresponding to a chain’s states.  

 

1.2 Continuous Markov model – estimation from panel data 

Continuous Markov process describes transition mechanism in continuous time. A movement 

from any state to another may take place at any moment, opposite to a discrete model in 

which transitions occur only in fixed time points, usually identical with moments of 

observation. The following estimation method assumes that movements take place any time 

but the process is observed in fixed time moments. 

 Markov property in continuous case takes form 

Siiji n   01,...,,, , 110 ...  nn tttt   (4) 

)()|(),...,,|( 101 1011 nnijtttnttt ttpiXjXPiXiXiXjXP
nnnnn

  
. 

The process is called homogeneous if transition probabilities within period of the length t are 

constant and it is usually described by a transition intensities matrix 
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with transition intensities )0('
ijij pq  , 




Sj

ijii qpq )0(' . Relation between transition 

intensity matrix and transition probability matrix in time period from 0 to t takes form 

tet QP )( . Memory-less assumption is equivalent to stating that sojourn time in state i has 

exponential distribution with parameter iq . 

 Estimating parameters of Markov process from panel data (Kalbfleisch&Lawless, 

1985) consists in maximizing likelihood 

    nknk
nk

tsts ttpQL
nknk ,1,

,
1,,

)(  


 ,   (5) 

subject to ijqln , with    1,, nknk tstsp  denoting probability that an individual k observed at the 

moment nkt ,  in state  nkts ,  moves to state  1, nkts  at the moment 1, nkt . In order to identify 

impact of exogenous factors on transition intensities a Markov model with covariates might 

be applied. Transition intensities are defined as functions of variables vector nk,z   

   nk
T
ijijnkij qq ,

)0(
, exp zβz   .   (6) 

The hazard ratio )exp( ijβ  is then interpreted as approximate rate of increasing transition 

intensity from state � to state � respect to variable nkz , . 

 

1.3 Spatial effects 

Estimation method described in section 1.2 enables to analyze dynamics of income 

distribution by a Markov model including spatial dependencies between regions by means of 

variables reflecting the impact of neighbourhood on region’s movement from state to state. To 

measure spatial effects the neighbourhood has to be established first. The distance matrix is 

constructed basing on physical distance between regions geographical centres and a k-near 

neighbours and maximal distance wage matrices are applied. The spatial autocorrelation is 

tested by Moran global statistics 
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with n denoting number of regions,  lmwW  wage matrix. 

Positive result of spatial autocorrelation tests proves that neighbour regions are more 

similar to each other then more distanced ones, i.e. poor regions have poor neighbours and 
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rich regions have also rich neighbours. Negative autocorrelation consists in neighbourhood of 

regions which are not similar to each other. It is convenient to illustrate spatial autocorrelation 

on Moran scatterplot showing value of income in a region versus waged value in its 

neighbourhood. Regions lying below regression line on Moran scatterplot have bigger value 

of income then their neighbours, regions above the line are surrounded by richer neighbours.

   

2 Regional GDP per capita distribution  

Figure 1 plots density function for GDP per capita in 2000, 2005 and 2010. The GDP per 

capita (in euro) distribution seems to be 3-modal in 2000 with the main mode around 18% of 

European average. The other modes seem to be vanishing in later years and are hardly seen in 

2010. Table 1 gives the results of best fitted (according to BIC criteria) mixture of normal 

distribution for 2000, 2005 and 2010. 

 

Fig. 1: GDP per capita in 2000, 2005, 2010 

 

Source: Author’s computation, R CRAN 

 

Tab. 1: Mixture of normal distribution, GDP per capita (euro) 

  Component 1 Component 2 Component 3 

2000 
Mixing proportion 0.251 0.5667 0.183 
Average 7.387 18.865 39.721 
Variance 1.470 32.349 230.945 

2005 
Mixing proportion 0.224 0.455 0.321 
Average 10.882 21.765 40.798 
Variance 3.389 23.037 308.576 

2010 
Mixing proportion  0.636 0.364 
Average  23.069 47.921 
Variance  58.417 489.284 

Source: Author’s computation, with spded package of R CRAN 
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To study spatial dependencies between regions wage matrix has been computed basing 

on k-near neighbours (k=5). Distance is measured between geographical centres of regions. 

Moran statistics for years 2000, 2005 and 2010 are presented in Table 2. Each case proves 

significant positive autocorrelation, however it seems to be decreasing in proceeding years. 

The results obtained for maximal distance (250 km) matrix show similar tendency.  

 

Tab. 2: Global Moran statistics - GDP per capita relative to EU average 

 GDP per capita (euro) GDP per capita (pps) 

2000 

Moran I statistic standard deviation = 17.6262,  
p-value < 2.2e-16, alternative hypothesis: greater 
Moran I statistic    Expectation          Variance 
0.694576117        -0.004761905       0.001574192 

Moran I statistic standard deviate = 13.2785,  
p-value < 2.2e-16, alternative hypothesis: greater 
Moran I statistic    Expectation          Variance 
0.520593621         -0.004761905       0.001565341 

2005 

Moran I statistic standard deviate = 14.7911,  
p-value < 2.2e-16 
Moran I statistic     Expectation          Variance 
0.580522285        -0.004761905       0.001565781 

Moran I statistic standard deviate = 10.2016,  
p-value < 2.2e-16 
Moran I statistic    Expectation          Variance 
0.396688762         -0.004761905       0.001548556 

2010 

Moran I statistic standard deviate = 12.1757,  
p-value < 2.2e-16 
Moran I statistic    Expectation          Variance 
0.475239543        -0.004761905       0.001554163 

Moran I statistic standard deviate = 6.969,  
p-value = 1.596e-12 
Moran I statistic    Expectation          Variance 
0.268671601         -0.004761905       0.001539429 

Source: Author’s computation, with spded package of R CRAN 

Moran scatterplot presented on Figure 2 shows the most outstanding points on the plot 

lying below the regression line referring to regions which are significantly richer comparing 

to their neighbours: SI021 –  Osrednjeslovenska (Slovenia), CZ010 – Hlavní mesto Praha 

(Czech Republic), PL127 – Miasto Warszawa (Poland), PL415 – Miasto Poznań (Poland), 

HU101 – Budapest (Hungary). 
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Fig. 2: Moran scatterplot – GDP per capita (euro)   

 

Source: Author’s computation, with spded package of R CRAN 

 

3 Distribution dynamics – estimation of Markov models 

To analyze dynamics of regional income distribution by means of Markov chain one has to 

remember that definition of states, i.e. the method of transforming a continuous variable to a 

discrete one, may influence the results. Distinguishing more classes should better reflect 

income distribution but results in increasing number of model’s parameters and possible 

problems with quality of estimates.  

Seven states of a Markov model have been distinguished basing on 15th, 30th, 45th, 

60th, 75th and 90th percentiles of regional income distribution. As available data form a panel  

the analysis is conducted with methods described in section 1.2. The intensity matrix for 

homogeneous model has been estimated and one-year transition probability matrix, limit 

distribution and sojourn times in each state have been calculated (Table 3 and 4). Probabilities 

to stay in the same state in the next year are very high, particularly for state 1 and 7 (the 

poorest and the richest class). Expected time to next movement (up or down) is between 2.86 

years for regions in state 4 (middle class) to 11.13 years in state 7. For states 2, 5 and 6 

movements down within one year are more likely than ups, for states 3 and 4 the opposite. 

Process is ergodic and its limit distributions gives no signs of GDP convergence.  
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Tab. 3: Transition intensities, sojourn time and ergodic distribution for homogenous 

model 

to 
from 

1 2 3 4 5 6 7 

1 
-0.1283 
(0.0237) 

0.1283 
(0.0237) 

     

2 
0.1469 

(0.0224) 
-0.2365 

(0.02830) 
0.0895 

(0.0171) 
    

3  
0.0883 

(0.0176) 
-0.2027 
(0.0269) 

0.1143 
(0.0203) 

   

4   
0.1319 

(0.0227) 
-0.3501 
(0.0385) 

0.2182 
(0.0308) 

  

5    
0.1821 

(0.0254) 
-0.2601 
(0.0298) 

0.0781 
(0.0155) 

 

6     
0.0888 

(0.0174) 
-0.1530 
(0.0229) 

0.0642 
(0.0148) 

7      
0.0899 

(0.0207) 
-0.0899 
(0.0207) 

sojourn time 
7.79 

(1.44) 
4.23 (0.50) 

4.94 
(0.65) 

2.86 
(0.31) 

3.84 
(0.44) 

6.53 
(0.97) 

11.13(2.56) 

ergodic 
distribution 

0.1716 0.1498 0.1518 0.1315 0.1577 0.1386 0.0990 

Notes: Standard errors in parenthesis 
Source: Author’s computation, with msm package of R CRAN 

 

Tab. 4: One-year transition probabilities for homogeneous model 

to 
from 

1 2 3 4 5 6 7 

1 0.8876 0.1074 0.0048 0.0002    
2 0.1231 0.8003 0.0724 0.0040 0.0002   
3 0.0054 0.0715 0.8256 0.0877 0.0096 0.0002  
4 0.0003 0.0045 0.1012 0.7247 0.1626 0.0066 0.0001 
5  0.0003 0.0092 0.1356 0.7887 0.0640 0.002 
6   0.0003 0.0063 0.0729 0.8635 0.0570 
7    0.0002 0.0034 0.0798 0.9166 

Notes: Standard errors in parenthesis 
Source: Author’s computation, with msm package of R CRAN 

 

Next part of analysis is an attempt to include spatial relations between regions directly 

into a model. The first nonhomogeneous Markov model (Model 1) with covariates is the one 

with variable N defined as waged average of GDP per capita level in region’s neighbourhood 

defined by k-near neighbours matrix W computed before. Such definition is supposed to 

regard impact of neighbours’ current position on transition intensities and transition 

probabilities. In the second model (Model 2) covariate U refers to regions position in its 

neighbourhood measured by percentage of NUTS2 level average of the area to which it 

belongs. The third model (Model 3) has time covariate. Table 5 contains hazard ratios 

)exp( ijβ  for each pair of states with non-zero transition intensities for three nonhomogeneous 
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models. The likelihood ratio test indicates models 1 and 2 to perform better than the 

homogeneous model, model 3 has been rejected. 

 

Tab. 5: Hazard ratio, nonhomogeneous models 

  Model 1 Model 2 Model 3 
from to HR L U HR L U HR L U 

1 2 1.0102 0.9182 1.1115 1.0079 0.9851 1.0313 0.9005 0.7863 1.0312 
2 1 0.9552 0.9039 1.0094 0.9901 0.9750 1.0055 0.8665 0.7743 0.9698 
2 3 1.0659 1.0260 1.1074 0.9976 0.9798 1.0158 1.0861 0.9558 1.2342 
3 2 0.9388 0.8888 0.9916 0.9988 0.9810 1.0169 1.0709 0.9288 1.2348 
3 4 1.0110 0.9656 1.0584 1.0080 0.9923 1.0240 0.9797 0.8681 1.1057 
4 3 1.0027 0.9581 1.0493 1.0110 0.9950 1.0272 1.0479 0.9367 1.1724 
4 5 0.9677 0.9307 1.0062 1.0011 0.9870 1.0154 0.9640 0.8733 1.0641 
5 4 0.9962 0.9598 1.0340 0.9788 0.9637 0.9942 0.9485 0.8620 1.0437 
5 6 0.9922 0.9403 1.0469 0.9965 0.9761 1.0174 0.9242 0.8089 1.0559 
6 5 0.9544 0.9189 0.9913 0.9692 0.9526 0.9861 0.9693 0.8490 1.1067 
6 7 1.0044 0.9699 1.0401 1.0182 1.0004 1.0362 1.0157 0.8741 1.1804 
7 6 0.9783 0.9517 1.0057 0.9964 0.9823 1.0108 1.0664 0.9115 1.2475 

Notes: L and U are lower and upper limit of 95% confidence interval. 
Source: Author’s computation, with msm package of R CRAN 

 

To see how neighbourhood impacts limit distribution several intensities matrices for 

the whole range of possible values of covariates resulting from their distributions have been 

calculated for Model 1 and Model 2. Limit distribution of GDP per capita in region 

surrounded by poor neighbours concentrates in state 1, for regions surrounded by rich 

neighbours mass of probability moves to states 4, 6 and 7.  Similarly, the mass of probability 

in limit distribution moves to higher states as region’s position compared to up-regional 

average increases (Figure 3).  

 

Fig. 3: Limit distributions for models with covariates 

 

Source: Author’s computation, with msm package of R CRAN 
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Conclusions 

The purpose of this paper was to show how Markov models with covariate can be applied to 

analyze income distribution dynamics. This approach is a modification of classic application 

of Markov chains in modelling convergence giving possibility to extract impact of particular 

factors (of time or spatial nature) on transition probabilities.  

Markov models applied for GDP per capita distribution dynamics in regions of new 

member countries of UE from 2000 to 2010 show strong tendency to stay in the same class of 

GDP level in succeeding years. Models with spatial effects prove that region is more probable 

to be in higher states (referring to higher level of GDP per capita) if it has rich neighbours.  
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