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Abstract 

In many real life experiments, the only available data is a successive minimum (maximum) 

that is record-breaking data. In this paper, we obtain the maximum likelihood and Bayesian 

estimator of the shape parameter for Burr Type XII distribution based on lower record values 

and inter-record times (the number of trials following the record values) when the other one is 

known. In the Bayesian case, the estimates are derived under the squared error and the linear-

exponential loss functions by using the informative and non informative priors. To be able to 

generate such a record-breaking data an inverse sampling or random sampling schemes can be 

used. In this paper, we assume that the record-breaking data are being generated by inverse 

sampling scheme. By using a Monte Carlo simulation methods: (i) the maximum likelihood 

and Bayes estimators are compared in terms of the estimated risk, (ii) the estimators are 

compared with and without the inter-record times are taken into consideration. 
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Introduction 

Let 1 2, ,...X X  be a sequence of independent and identical distributed (i.i.d.) continuous 

random variables. An observation jX  will be called a lower record values if its value is 

smaller than that of all the previous observations. By definition, 1X  is a lower record value. 

An analogous definition can be given for upper record values. A record data may be 

represented by 1 1 2 2( ) : ( , , , , , , )m mR,K R K R K R K   where iR  is the i th record value, meaning 

new minimum (or maximum), and iK  is the number trials following the observation of iR  

that are needed to obtain a new record value 1iR  , which is called inter-record times.  
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Record values and associated statistics are of great importance in several real life 

problems involving weather, economic, life-test and sports. In recent years there has been a 

growing interest in the study of inference problems associated with record values. For 

example, the Bayesian estimation for the two parameters of some life distributions, including 

exponential, Weibull, Pareto and Burr Type XII, based on upper record values were 

considered by (Ahmadi & Doostparast, 2006). Statistical analysis of record values from the 

Kumaraswamy distribution was considered by (Nadar, Papadopoulos & Kızılaslan, 2013). For 

more detailed references about the record values see (Arnold, Balakrishnan & Nagaraja, 

1998). 

Moreover, inference problem with record values and their corresponding inter-record 

times are recently getting more and more attention. For example, when the underlying 

distribution is exponential, estimation of the mean parameter was obtained by (Sameniego & 

Whitaker, 1986) under random sampling scheme and inverse sampling scheme. Non-Bayesian 

and Bayesian estimates were derived for the two parameters of the exponential distribution 

based on record values and their corresponding inter-record times under the inverse sampling 

scheme by (Doostparast, 2009). When the underlying distribution is lognormal, non-Bayesian 

and Bayesian estimates of the parameters were obtained by (Doostparast, Deepak & Zangoie, 

2012). 

The two parameter Burr Type XII distribution which was introduced in the literature 

by (Burr, 1942). Its probability density function (pdf) and cumulative density function (cdf) 

are given by  

1 ( 1)( ; , ) (1 ) ,  0,f x x x x                 (1) 

( ; , ) 1 (1 )F x x                 (2) 

where 0   and 0   are the shape parameters and is denoted by ( , )Burr   . In the 

literature, a comprehensive studies for the two parameter Burr Type XII distribution were 

done by several authors. For example, the Bayes estimation of   and the reliability function 

were obtained by (Papadopoulos, 1978) when  is known. The Bayes estimations of the 

parameters, reliability and failure rate function based on type II censoring data were 

considered by (Al-Hussaini & Jaheen 1992, 1995). Under the different loss functions the 

Bayes estimator of   and reliability function were derived by (Moore & Papadopoulos, 

2000). Estimation of the parameters based on generalized order statistics were obtained by 

(Jaheen, 2005). The empirical Bayes estimation and prediction of   based on record values 

were discussed by (Wang & Shi, 2010) when   is known. The Bayes estimates of the shape 
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parameters based on the linear exponential loss function were derived by (Nadar & 

Papadopoulos, 2011). 

In this paper, we obtained the estimation of the shape parameter   for the Burr Type 

XII distribution using lower record values and their corresponding inter-record times under 

the classical and Bayesian frameworks when the shape parameter   is known. For the sake of 

comparison we also obtain the estimates based on the lower record values without considering 

inter-record times. Finally, Monte Carlo simulations are performed to observe the effect of the 

inter-record times in estimations. 

The paper is organized as follows. In Section 1, we derive the maximum likelihood 

estimation (MLE) of the parameters under the inverse sampling scheme. In Section 2, when 

the shape parameter  is known, we obtain the Bayesian estimations of   under the 

symmetric and asymmetric loss functions. In Section 3, a computer simulation study is done 

to compare the different estimators discussed in early sections and the results are reported. 

Finally, the paper is completed by a conclusion section. 

 

1 Non-Bayesian Analysis 

Under the inverse sampling scheme units are taken sequentially and the sampling is 

terminated when the m  th minimum observation is obtained. In this case, the total number of 

units sampled is a random number, and mK  is defined to be one for convenience. 

In this section, we consider the parameter estimation of Burr Type XII distribution 

under inverse sampling scheme when the shape parameter   is assumed to be known and 

unknown. 

Let 1 2, ,...X X  be independent identical distributed (i.i.d.) random variables, each 

drawn from a population with cdf (.)F  and pdf (.)f . Then the likelihood function associated 

with the sequence 1 1 2 2( , , , , , , )m mR K R K R K  is given by (Samaniego & Whitaker, 1986) 

   1

1

,
1

( , ) ( ) 1 ( ) ( )i

i
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k

i i ir
i

L f r F r I r







 r k          (3) 

where 0r   , 1mk   and ( )AI x  is the indicator function of the set A . From the equations (1)-

(3), we have 
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( , ; , ) exp ( 1) ln ln(1 ) ln(1 ) ,
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  r k      (4) 

where 1 mr r  . Then, the MLEs of   and   are given by  
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and �  is the solution of the following non-linear equation 
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It can be solved by using the fixed point iteration or Newton-Raphson method.  

 

1.1 MLE estimation of   when   is known 

In this case, we assume that   is known and is equal to be 0  without loss of generality. 

Then, we have from (4) 
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where 0

0
1 1

( ) ln(1 )
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  . It is clear that 0( )T   is a complete sufficient statistic for   

and the MLE of   is �

0( )
M

m

T



 . The distribution of � M  can be be obtained by using the 

moment generating function of 0( )T  , which is given as 
1
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. Therefore, 

0( )T   is distributed Gamma with parameters ( , )m   with the pdf  

1( ) ,  0
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It is easily seen that �( )
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 and an unbiased estimator of   is given by �

0
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 . 

Moreover, � U  is a best unbiased estimator from Lehmann-Scheffé Theorem.  

 

2 Bayesian Analysis 

Bayesian approach has a number of advantages over the conventional frequentist approach. 

Bayes theorem is the only consistent way to modify our beliefs about the parameters given the 

data that actually occurred. The beliefs about the parameter are called prior distribution. Any 
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prior information about the parameters is considerably useful. We need some prior 

distributions of the unknown parameters for the Bayesian inference.  

In this section, we consider the Bayes estimate of the shape parameter   when the 

shape parameter   is known. We assume that   has Gamma prior with parameters 1 1( 1, )a b  

and its pdf is denoted by ( )  . Then, the posterior density function of   is  

1

1 01

1
( ( ))0 1 0

1
0

0

( , ; , ) ( ) ( ( ))
( , ) .

( 1)
( , ; , ) ( )

m a
b Tm aL b T

e
m a

L d

     
  

    

 
 




 

  


r k
r k

r k

 

It means that , r k  is distributed Gamma with parameters 1 1 0( 1, ( ))m a b T    . We know 

that the Bayes estimate of   under squared error (SE) loss function, � BS , is the mean of the 

posterior density function of  . Therefore,  

� 1

1 0

1

( )
BS

m a

b T




 



             (7) 

It is well known that the use of symmetric loss functions may be inappropriate in 

many circumstances, particularly when positive and negative errors have different 

consequences. A useful alternative to the symmetric loss functions is a convex but 

asymmetric loss function, called linear-exponential loss function (LINEX), was proposed by 

(Varian, 1975) and is defined as ( )( , ) ( ) 1,  0vL e v v          where   is an estimator 

of  . The sign and magnitude of v  represents the direction and degree of asymmetry, 

respectively. If 0v  , the overestimation is more serious than underestimation, and vice 

versa. For v  close to zero, the LINEX loss is approximately SE loss and almost symmetric. It 

is easily seen that the value of ( )X  that minimizes  ( , ( ))
X

E L X    is 

  1
ln ( )v

BL X
E e

v



   , provided ( )v

X
E e 


  exists and is finite. Here (.)

X
E


 denotes the 

expected value with respect to the posterior density function   given X .  

The Bayes estimator of   under the LINEX loss function, � BL , is obtained as  

� 1
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11
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If we use the Jeffrey's non-informative prior, ( ) 1/   , then we have , r k  is distributed 

Gamma with parameters 0( , ( ))m T  . Therefore, the Bayes estimates of   under the SE and 

LINEX loss functions are obtained as  

� �
,0 ,0

0 0

,  ln 1 .
( ) ( )

BS BL

m m v

T v T
 

 

 
   

 
         (9) 

 

3 Simulation Study 

In order to compare the different estimators, Monte Carlo simulations are performed by using 

different sample sizes and different priors. All the programs are written in Matlab 2010a. All 

the results are based on 1000 replications. The estimated risk (ER) of  , when   is estimated 

 

Tab. 1: Estimations of   and ERs for 3   when the inter-record times are considered. 

1 1( , )a b  m    �
M  �

U  �
BS  �

BL  

 v  -2 -1 1 2 

(4,6) 3 0.8284 1.2490 0.8327 0.8330  0.9435 0.8834 0.7900 0.7526 

   1.4670 0.5575 0.0992  0.2407 0.0543 0.0458 0.1708 

 5  1.0446 0.8357 0.8368  0.9249 0.8777 0.8010 0.7691 

   0.4246 0.2374 0.0774  0.1772 0.0416 0.0361 0.1349 

 8  0.9452 0.8270 0.8301  0.8960 0.8612 0.8020 0.7765 

   0.1995 0.1411 0.0626  0.1405 0.0332 0.0297 0.1134 

 10  0.9220 0.8298 0.8299  0.8869 0.8570 0.8052 0.7825 

   0.1324 0.0974 0.0495  0.1038 0.0254 0.0242 0.0943 

(5,5) 3 1.2086 1.8828 1.2552 1.2034  1.4147 1.2970 1.1264 1.0615 

   8.0253 3.3170 0.1868  0.5007 0.1072 0.0832 0.3020 

 5  1.5495 1.2396 1.2011  1.3714 1.2781 1.1359 1.0796 

   1.3788 0.7850 0.1510  0.3393 0.0811 0.0696 0.2574 

 8  1.4030 1.2277 1.2162  1.3498 1.2779 1.1623 1.1146 

   0.3510 0.2367 0.1191  0.2704 0.0636 0.0557 0.2096 

 10  1.3511 1.2160 1.2070  1.3210 1.2602 1.1599 1.1176 

   0.3155 0.2366 0.1063  0.2354 0.0562 0.0500 0.1872 

Source: own computations 
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by  , is given by � 2

1

1
( ) ( )
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   under the SE loss function. Moreover, the 

estimated risk of   under the LINEX loss function is given by 

  ( )

1

1
( ) ( ) 1i i

N
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i i
i

ER e v
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    . 

In the Table 1, we consider the case where 3   and   has Gamma prior with parameter 

1 1( , ) (4,6)a b   and 1 1( , ) (5,5)a b  . When the estimates obtained without taking inter-record 

times into consideration, the results are given in Table 2 and is denoted by * . The ML and 

Bayesian estimates for SE and LINEX loss functions are listed in both Tables 1 and 2. 

 

Tab. 2: Estimations of   and ERs for 3   when the inter-record times are not 

considered. 

1 1( , )a b  m    � *

M  � *

BS  � *

BL  

 v  -2 -1 1 2 

(4,6) 3 0.8284 1.5451 0.5557  0.4911 0.4959 0.8386 0.8434 

   5.1532 0.1937  1.0969 0.1640 0.0542 0.2225 

 5  1.4989 0.5577  0.4926 0.4975 0.8416 0.8466 

   4.6678 0.1926  1.0937 0.1634 0.0539 0.2196 

 8  1.5275 0.5581  0.4921 0.4976 0.8426 0.8481 

   4.4683 0.1899  1.0839 0.1616 0.0526 0.2156 

 10  1.4775 0.5559  0.4913 0.4961 0.8389 0.8436 

   3.6899 0.1937  1.0968 0.1641 0.0543 0.2233 

(5,5) 3 1.2086 2.5249 0.8372  0.6375 0.7117 1.2986 1.3729 

   31.1836 0.3644  4.3029 0.3936 0.1155 0.6740 

 5  2.4101 0.8303  0.6351 0.7068 1.2869 1.3586 

   26.9995 0.3683  4.3133 0.3959 0.1132 0.6480 

 8  2.6684 0.8375  0.6360 0.7116 1.2994 1.3750 

   25 .2401 0.3594  4.3083 0.3895 0.1125 0.6623 

 10  2.6460 0.8414  0.6383 0.7146 1.3058 1.3821 

   16.4012 0.3607  4.2984 0.3901 0.1164 0.6851 

Source: own computations 

Note: In the Tables, the first and second rows represent the average estimates and the 

estimated risks. 
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In Tables 1 and 2, it is observed that as the sample size increases the estimated risk of the 

estimates generally decrease. The ERs of the MLEs are greatest among all estimators. 

Moreover, the ERs of the Bayes estimators under the SE loss function are smaller than the 

MLEs, as expected. Furthermore, it is observed that the ERs for estimates of   are smaller 

than that of * . It is quite natural to see such a result when more information is available. The 

simulation illustrates that considering inter-record times is increasing the accuracy and the 

precision of the estimates. 

 

Conclusion  

In this study, we compared the different estimators of the shape parameter   for the Burr 

Type XII distribution when the shape parameter   is known. It is observed that the Bayesian 

estimators have a smaller estimated risk and this result does not change for the different 

values of the prior parameters by using Monte Carlo simulation. Moreover, the simulation 

illustrates that taking the inter-record times into consideration increases the accuracy and the 

precision of the estimators. 
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