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Abstract 

The paper deals with the comparison of data dimensionality reduction methods with emphasis 

on ordinal data. Categorical and especially ordinal data we frequently obtain from 

questionnaire surveys. A questionnaire usually includes a big amount of questions (variables). 

For applications of multivariate statistical methods, it is useful to reduce the number of these 

questions and create new latent variables, which represent groups of original questions. Some 

dimensionality reduction methods are applicable to ordinal data (latent class models), some 

methods must be improved (categorical principal component analysis). Other methods are 

based on a distance matrix, so it is possible to use an appropriate distance measure for ordinal 

data (multidimensional scaling). In this paper, dimensionality reduction methods are applied 

to real datasets including ordinal data in the form of Likert scales. Various techniques for the 

comparison of these methods are used. They are aimed to investigate goodness of the data 

structure in original and reduced space. In this paper the goodness is evaluated by Spearman 

rank correlation coefficient. 

Key words:  dimension reduction, principal component analysis, multidimensional scaling, 

latent class models 
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Introduction 

The aim of this paper is the comparison of dimensionality reduction methods for ordinal 

variables. Reduction methods described in the following chapter were applied to ordinal 

datasets including values in the form of Likert scales. Inter-object distances in original and 

reduced space were evaluated. With respect to the ordinal character of the data, Kendall 

correlation coefficient was used as a similarity measure. Further we measured how well the 

structure and structural relationship of the data were preserved by dimension reduction. For 

the purpose of this paper Spearman rank correlation coefficient between inter-object distances 

in original and reduced space was used. In the current research a similar problem but for the 
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different kind of the data (continuous) or for different kinds of methods (nonlinear) was 

solved in (Li, 1995). For the comparison various procedures were used, e.g. scatterplots or 

Spearman rank correlation coefficient of inter-object distances in original and reduced space, 

Procrustes analysis or  measuring the generalization error of k-nearest neighbor classifiers 

trained on the resulting data representations (Maaten, 2008). Similar reduction methods 

applied to ordinal data evaluated by fuzzy cluster analysis were discussed in (Sobíšek, 2011). 

 

1 Dimensionality reduction methods 

Basic methods of the data dimensionality reduction are principal component analysis (PCA), 

factor analysis (FA) and multidimensional scaling (MDS). Classical FA methods assume 

linear relations among original variables, new latent variables are continuous and normally 

distributed. Conventional factor analysis is usually based on correlation matrix analysis, for 

more details see (Hebák et al., 2007).  

Common methods of latent variables identification are latent class models. There exist 

various methods, which are available in statistical software packages, e.g. basic LCA models, 

latent class cluster models LCC, discrete factor analysis models DFactor, latent trait analysis 

LTA, latent profile analysis LPA, latent class regression models LCR etc. 

 

1.1 Categorical principal component analysis 

Some methods are based on multidimensional space projection into the space with lower 

dimension. A basic method is principal component analysis. The aim is to find a real 

dimension of the data. To find a real dimensionality, original dataset X is transformed to the 

new coordinate system by an orthogonal linear transformation. Let 
S

F  (resp. 
S

G  ) be the 

vector of the rows coordinates (resp. columns) on the axis on the s-th rank. These two vectors 

are related by the transition formula, e. g. in the case of PCA there are 
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where 
S

F  denotes the coordinate of the i-th object on the s-th axis, 
S

G  denotes the coordinate 

of the k-th variable k on the s-th axis, 
S
  the eigenvalue associated with the s-th axis, 

k
m  is 

the weight associated to the k-th variable , 
i

p  is the weight associated to the i-th object.  

Instead of conventional principal component analysis for quantitative variables it is 

possible to use categorical principal component analysis CATPCA, which transforms 

categorical variables into quantitative variables and does not assume linear relations among 

variables. For more datails see (Le, 2008).  

 

1.2 Multidimensional scaling 

According to (Holland, 2008) this method starts with a matrix of data X consisting of N rows 

of objects and J columns of variables. From this symmetrical matrix of all pairwise distances 

among objects is calculated with an appropriate distance measure, such as Euclidean distance, 

Manhattan distance (city block distance), and Bray distance. The MDS ordination will be 

performed on this distance matrix. Next, a desired number of m dimensions is chosen for the 

ordination. Distances among objects in the starting configuration are calculated, typically with 

the Euclidean metric. These distances are regressed against the original distance matrix and 

the predicted ordination distances for each pair of objects is calculated. A variety of 

regression methods can be used, including linear, polynomial, and non-parametric 

approaches. In any case, the regression is fitted by least-squares. The goodness of fit of the 

regression is measured based on the sum of squared differences between ordination-based 

distances and the distances predicted by the regression. This goodness of fit is called stress 

and can be calculated in several ways, e.g. with one of the most common being Kruskal’s 

Stress 
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where dhi is the ordinated distance between h-th and i-th objects, and d̂ is the distance 

predicted from the regression. The basic similarity measure of two quantitative variables is 

Pearson correlation coefficient. To measure similarity of ordinal variables it is possible to use 

e.g. Spearman or Kendall rank correlation coeficient or symmetric Sommers coefficient. For 

details see e.g. (Hendl, 2006). 
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1.3 Latent class models 

The basic latent class model is a finite mixture model, in which the component distributions 

are assumed to be multi-way cross-classiffcation tables with all variables mutually 

independent. The latent class regression model further enables us to estimate the effects of 

covariates on predicting latent class membership. Evaluation algorithm uses expectation-

maximization and Newton-Raphson algorithms to find maximum likelihood estimates of the 

model parameters. 

According to (Linzer, 2011) the basic latent class model is a finite mixture model in 

which the component distributions are assumed to be multi-way cross-classification tables 

with all variables mutually independent. We observe J polytomous categorical variables (the 

manifest variables), each of which contains Kj possible outcomes, for objects i = 1, ..., N. The 

manifest variables may have different numbers of outcomes, hence the indexing by j. We 

denote as Yijk the observed values of the J manifest variables such that Yijk = 1 if respondent i 

gives the k-th response to the j-th variable, and Yijk = 0 otherwise, where j = 1, ..., J and 

k = 1, ..., Kj . The latent class model approximates the observed joint distribution of the 

manifest variables as the weighted sum of a finite number R of constituent cross-classification 

tables. Let πjrk denote the class-conditional probability, that an object in class r = 1, ..., R 

produces the k-th outcome on the j-th variable. Within each class, for each manifest variable, 

therefore  


jK

k
jrk

1

1 . Further we denote as pr the R mixing proportions that provide the 

weights in the weighted sum of the component tables, with  
r

r
p 1 . The values of pr are also 

referred to as the prior probabilities of latent class membership, as they represent the 

unconditional probability that an object will belong to each class before taking into account 

the responses Yijk provided on the manifest variables. The probability that the i-th object in the 

r-th class produces a particular set of J outcomes on the manifest variables, assuming 

conditional independence of the outcomes Y given class memberships, is the product 
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The probability density function across all classes is the weighted sum 
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The parameters estimated by the latent class model are pr and πjrk. Given estimates 
r

p̂  and 

jrk
̂  of pr and πjrk, respectively, the posterior probability that each object belongs to each class, 
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conditional on the observed values of the manifest variables, can be calculated using Bayes’ 
formula: 
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where  Rri ...,1 . Let us recall that the 
jrk

̂  are estimates of outcome probabilities 

conditional on the r-th class. It is important to remain aware that the number of independent 

parameters estimated by the latent class model increases rapidly with R, J, and Kj . Given 

these values, the number of parameters is     
j

j
RKR 11 . If this number exceeds either 

the total number of objects, or one fewer than the total number of cells in the cross-

classification table of the manifest variables, then the latent class model will be unidentified. 

The poLCA estimates the latent class model by maximizing the log-likelihood function 
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with respect to pr and πjrk, using the expectation-maximization (EM) algorithm. This log-

likelihood function is identical in form to the standard finite mixture model log-likelihood. As 

with any finite mixture model, the EM algorithm is applicable because each object's class 

membership is unknown and may be treated as missing data. The EM algorithm proceeds 

iteratively. We start with arbitrary initial values of 
r

p̂  and 
jrk

̂ , and label them old

r
p̂  and old

jrk
̂ . 

In the expectation step, we calculate the missing class membership probabilities using 

Equation 6, substituting in old

r
p̂  and old

jrk
̂ .  In the maximization step, we update the parameter 

estimates by maximizing the log-likelihood function given these posterior  
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as the new prior probabilities and 
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as the new class-conditional outcome probabilities. In Equation 9, new

jr
̂  is the vector of length 

Kj of class-r conditional outcome probabilities for the j-th manifest variable; and Yij is the 

j
KN   matrix of observed outcomes Yijk on that variable. The algorithm repeats these steps, 
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assigning the new to the old, until the overall log-likelihood reaches a maximum and ceases to 

increment beyond some arbitrarily small value. 

 

2 Distance and similarity measures for ordinal data 

Dimension reduction methods frequently require an appropriate similarity measure. For 

ordinal variables it is possible to use some dependence intensity measure, e.g. an association 

measure in contingency tables. According to (Hendl, 2006) generally we measure the 

dependence intensity of two normally distributed variables  by Pearson correlation coefficient. 

If we do not know distribution of the data instead of Pearson correlation coefficient we can 

use Spearman rank correlation coefficient (10) which can be used also for ordinal variables. 

Sometimes we also know only ranks of measured values. If there is a similar rank of two 

samples X, Y, it means information about the dependence of these variables. Spearman 

correlation coefficient is evaluated as a correlation coefficient applied to the rank of the 

values from ranked samples. Values of the variables X, Y we rank with respect to the size and 

we obtain the sequence 
)()2()1(
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n
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YYY  . Let 
i

R  be the rank of the 

variable 
i

X  and 
i

Q  the rank of the variable 
i

Y  in the ranked sample. It holds 
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Under the hypothesis of independence Sr  has the mean value 0, the variance  
1

1

n
  and 

approximately  for n > 30  asymptotically normal distribution with critical values  
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If both variables are ordinal, we can use some nonparametric correlation coefficient, 

e.g. Kendall correlation coefficient. One option of the Kendall correlation coefficient is 

Goodman-Kruskal coefficient γ. It is evaluated from the count of the concordances P and 

discordances Q. It is appropriate coefficient to describe association of ordinal variables in the 

contingency table. Coefficient γ can be evaluated from the formula 
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Further option of Kendall correlation coefficient is Kendall 
c
  coefficient 

 
)1(
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m is smaller dimension from the contingency table. It is appropriate coefficient to describe 

association in the table with various values of dimensions. Other option of Kendall correlation 

coefficient is 
b
  coefficient 
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x
T  is the count of the pairs with the same value of the variable X and different value of the 

variable Y, 
Y

T  is the count of the pairs with the same value of the variable Y and different 

value of the variable X. From the difference  QP   we can calculate also Sommers 

correlation coefficients which are appropriate to evaluate if row or column variable can 

predict values of column or row variable. 

 

3 Results 

Two datasets were evaluated by statistical software SPSS and R. One dataset is related to the 

research „Public perception of the policeman“. Questionnaire survey was held in the years 

1995, 1999, 2006 in the Police academy of the Czech Republic and investigated typical 

policeman perception in the public society. Data from 100 respondents from the last 

realization (2006) are used in this article. Questionnaire survey included 24 questions 

(variables) with bipolar scales from 1 to 7, 4 is the neutral level. Lower positions mean 

positive, upper negative evaluation of the typical policeman. The questions described usually 

moral characteristics (adjectives) of the policeman, e.g. good-bad, active-passive, fast-slow 

etc. For more details see Moulisová 2009. The second dataset is related to the research 

„University students active lifestyle“ (15 selected Likert scaled variables from 100 

respondents, scale 1-8), Students described satisfaction concerning different points of view of 

the students’ life. Respondents evaluated their satisfaction on the scale from 1 (no 

satisfaction) to 8 (very satisfied). For more details see Valjent 2010. 

 Compared methods are categorical principal component analysis (procedure 

CATPCA in SPSS), multidimensional scaling (procedure ALSCAL and PROXSCAL in 

SPSS) and latent class models (procedure poLCA in R). The number of latent variables was 
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calculated with respect to the number of eigenvalues distinctly higher than one from 

categorical principal component analysis. It means 4 latent variables for the first dataset and 5 

latent variables for the second dataset. For the comparison the same number of latent variables 

or classes was selected also for remaining dimensionality reduction methods. Kendall rank 

correlation coefficient we used as an inter-object distance measure and finally Spearman rank 

correlation coefficient between distances in original and reduced space was evaluated, see 

Tab. 1. Graphs of component loadings (Fig. 1) and coordinates from multidimensional scaling 

(Fig. 2, 3) are attached as well. 

 

Fig. 1: Component loadings (CATPCA in SPSS, datasets 1, 2) 

 
Source: own research 

 

Fig. 2: Coordinates (MDS Proxscal in SPSS, datasets 1, 2) 

 

Source: own research 
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Fig. 3: Coordinates (MDS Alscal in SPSS, datasets 1, 2) 

 

Source: own research 

 

Tab. 2: Spearmann rank corellation coefficients of inter-object distances in original and 

reduced space 

Method Dataset 1 Dataset 2 

CATPCA 0.33 0.51 

MDS PROXSCAL 0.18 0.25 

MDS ALSCAL 0.20 0.28 

LCA 0.29 0.48 

Source: own research 

 

Conclusion 

For the comparison of dimensionality reduction methods applied to ordinal datasets we used 

Spearmann rank correlation coefficient between distances in original and reduced space. From 

the results of four dimensionality reduction methods applied to two ordinal dataset we can 

see, that satisfactory goodness of the data structure was obtained in case of CATPCA and 

LCA, weaker results were reached from the methods of multidimensional scaling. In further 

research other comparison techniques will be provided, e.g. Procrustes analysis and the results 

from all these techniques will be compared.  
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