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 A PROBABILISTIC MODEL FOR SIMPLE LEARNING 

Jan Coufal   

 

Abstract 

In this paper I shall present an example the experimental extinction of learned response and 

the basic structure of a mathematical model designed to describe some simple learning 

situations, with special attention to the acquisition and extinction of behaviour habits in the 

Graham-Gagné runway and the Skinner box. As measure of behaviour I have chosen 

probability, that the instrumental response will occur during a specified time. I conceive that 

probability is increased or decreased amount after each occurrence of the response that the 

determinants of the amount of change in probability are the environmental events and the 

work or effort expending in making the response.  It is probability model for simple learning, 

that is examined the first-order linear difference equations with constant coefficients. 

Equations of mean latent time as a function of trial number are derived for the runway 

problem. Equations for the mean rate of responding and cumulative numbers of responses 

versus time are derived for the Skinner box experiments. An example is the particle and wave 

interpretation of atomic theory. 

Key words:  linear difference equation, homogeneous difference equation, auxiliary equation, 

Markov property, probability, simple learning  
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Introduction 

This paper continues and extends the article Coufal (2012). During the Second World War, 

developments in engineering, mathematical logic and computability theory, computer science 

and mathematics, and the military need to understand human performance and limitations, 

brought together experimental psychologists, mathematicians, engineers, physicists, and 

economists. Out of this mix of different disciplines mathematical psychology arose. 

Especially the developments in signal processing, information theory, linear systems and filter 

theory, game theory, stochastic processes and mathematical logic gained a large influence on 

psychological thinking. (Batchelder, 2002) 
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Two seminal papers on learning theory in Psychological Review helped to establish the field 

in a world that was still dominated by behaviorists: A paper by Robert R. Bush and Frederick 

A. Mosteller (1951) instigated the linear operator approach to learning, and a paper by 

William K. Estes (1950) that started the stimulus sampling tradition in psychological 

theorizing. These two papers presented the first detailed formal accounts of data from learning 

experiments. Mathematical psychology is a sub-field of psychology that started in the 1950s 

and has continued to grow as an important contributor to formal psychological theory, 

especially in the cognitive areas of psychology such as learning, memory, classification, 

choice response time, decision making, attention, and problem solving. 

 

1 The Model 

Let us that subject is introduced into following oversimplified learning situation: 

a) a stimulus is presented,  

b) the subject may or may not react to this stimulus, but 

c) if he does respond positively, he is by some means discouraged from repeating this 

response. 

To fix ideas, consider the example in which a rat, previously perfectly conditioned to running 

a straight runway to find food at its end, is placed in the starting box. In a specified 

subsequent time interval (long enough to permit completion of the run, but not long enough to 

allow dawdling along the way) the rat either makes the complete run or does not. If he does, 

he is disappointed to find that the food reward is not longer present. Let us call the completion 

of the run in the allotted time a positive response. After this trial run, the rat is once again 

placed in the starting box and another trial takes place. In this way the rat is subjected to many 

repeated trial runs, each of which may or may not result in a positive response. If we imagine 

a large number of rats similarly, but independently, used as subjects in these repeat runway 

trials, than we can compute the proportion of rats responding positively in trial number 1, in 

trial number 2 , etc. Intuitively, we expect that the response of running to the end of the 

runway in the fixed allotted time interval will be extinguished owing to the absence of reward 

and that this “learning” will manifest itself in an ever-decreasing proportion of the rats who 

respond positively. 

Now it actually turns out to be more convenient for the mathematical model to study a 

subject’s probability of making a positive response, rather than the proportion of positive 

responses in large group of subjects. Of course, when using this probability model one 
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ordinary takes this empirical proportion as an estimate of the theoretical probability. Since the 

subject learns as the experimental trials are run, the probability of positive response will 

change trial to trial. 

Suppose we wish to study how behavior changes under certain experimental 

conditions. We think, in particular, of a sequence of events starting with the perception of 

stimulus, followed by the performance of a response (pressing bar running maze, etc.), and 

ending with the occurrence of an environmental event (presentation of food, electric shock, 

etc.). 

Behavior is measured by the probability, ,p  that  the response will occur during some 

specified time interval after the sequence is initiated. The general idea is that p  denotes the 

subject’s level of performance and is increased or decreased after each occurrence of the 

response according as the environmental factors are reinforcing or inhibiting. 

If we imagine an experiment in which a subject is repeatedly exposed to this sequence 

of events (stimulus-response-environmental event), we may divide the experiment into stages, 

each stage being a trial during which the subject is run through the sequence. The subject’s 

level of performance is then function of the trial number, denoted by n , and we let np  be the 

probability of response (during the specified time interval following the stimulus) in the n th 

trial run. The number 0p  will be taken as the initial value describing the disposition of the 

subject toward the response when he is first introduced to the experiment proper.  The 

function p  is then defined with domain the set of  n -values ,2,1,0 . By calling p  a 

probability we impose the norming 

  10
,...2,1,0




n
n

p , (1) 

 

which merely identifies the extremes of no response and certain response with the values 0  

and 1 respectively. 

We first assume that 1np  depends on np  only and not on earlier values of the 

function p . In other words, the subject’s performance in trial 1n , although dependent on 

his level of behavior in the preceding trial (as measured by np ), is independent of the past 

record of performance leading to trial n . This is referred to as the Markov property (Feller, 

1957, p. 369) of the model. Following (Bush & Mosteller, 1951), we make the simplifying 
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assumption that this dependence of 1np  on np  is a linear one. The slope-intercept form of the 

equation of this straight line is 

  nn
n

pmap 

 1

,...2,1,0

, (2) 

where a  is the intercept and m  is the slope of the line. 

For our purposes, it is more convenient to write this linear relation in the “gain-loss” 

form. We introduce the parameter b  by defining equation 

 bam  1  (3) 

so relation (2) may be written as 

   nnnn
n

pbpapp 

 11

,...2,1,0

, (4) 

If  a  and b  are know, then we may likewise determine m . 

If the subject’s level of performance at trial number n  is given by np , then np1  is 

the maximum possible increase in level and np  is the maximum possible decrease in 

moving to trial 1n . This follows since 1 and 0  are the largest and smallest values of  1np . 

Equation (4) may be translated by saying that the change in performance level, 

nnn ppp  1  is proportional to the maximum possible gain and maximum possible loss1. 

The constant of proportionality are a  and b  and we may therefore measure by the parameter 

a  those environmental events which are reinforcing (e.g., presenting a reward) and by b  

those event  which are inhibiting (e.g., punishing the subject). 

Restriction on a  and b  are imposed only order to ensure that no matter what value 

np  has, consistent with (1), the following value, 1np , will also be between 0  and 1 

inclusive.  If  0np , then apn 1 , so we require 

 10  a . (5) 

If  1np , then bpn  11 , so  b1  must be between 0  and 1 inclusive. But this means  

we require 

 10  b . (6) 

We have proved that conditions (5) a (6) are necessary for 1np  to be between 0  and 1 

inclusive. It is not hard to show that they  are also sufficient  conditions. If  10  a  and 

10  b , then     101111  nnnnnn pppbpapp  and  

                                                             
1 It is for this reason that  (4) was named the “gain-loss” form. 
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    01011  nnnnnnn ppppbpapp . 

These restrictions are the only ones imposed on the parameters a  and b  appearing in 

the fundamental equation (4). Thus, 0a  describes a situation in which no reward is given 

after the response occurs, 0b  describes a no-punishment trial, and ba   implies that the 

measures of reward and punishment are equal. 

The apparatus used in this study consists of a runway, at one end of which is a starting 

box and at the other end a food box. The time taken by the animal to leave the starting box 

before traversing the runway to food (the latent period) was used as the measure of response. 

Quoting (Bush & Mosteller, 1951), “we may now describe the progressive change in the 

probability of response in an experiment such as the Graham-Gagné runway or Skinner box in 

which the same environmental events follow each occurrence of the response.” 

 

2 The Solution 

To return to the general case, we note that (4) may be rewritten in the standard form 

   apbap nn
n



 11

,...2,1,0

. (7) 

This we recognize as a linear first-order difference equation with constant coefficients. 

The homogeneous difference equation corresponding to (7) is 

   011
,...2,1,0



 nn

n

pbap , (8) 

and the auxiliary equation to (8) is 

   01  ba .  

Then the general solution of the homogeneous equation (8) is 

 nn baCp  1 , 

where C  is arbitrary real constant. 

To find a particular solution of (7) we use a trial solution of the form kpn 
* , a 

constant. If this to satisfy (7), we must have   akbak  1 , i.e. 
ba

a
k


 , so a 

particular solution of (7) is given by 
ba

a
pn


* . 

Thus, the general solution of equation (7) has the form 
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ba

a
baCppp n

nnn


 )1(*
. (9) 

The number 0p  is the initial value. We therefore have the solution:  

for  ,2,1,0n  

 
   

.0

,01 0

0 





 

 

ba

ba

if

ifpba

p
p ba

a
ba

an

n  (10) 

In view (5) a (6) if 1 ba , the sequence  np  oscillates between the two values 0p  and 

01 p . But in all other cases the sequence  np  converges, to the limit 0p  if  0 ba , and 

to limit 
ba

a


 otherwise. If  10  ba , then the sequence  np  is monotone decreasing to 

ba

a


 if 

ba

a
p


0 , monotone increasing to 

ba

a


 if 

ba

a
p


0 . If  21  ba , then the 

sequence  np  is a damped oscillatory sequence with limit 
ba

a


. The special case 0 ba  

yields a constant sequence with value 0p ; 1 ba  produces a sequence each of whose 

elements is 
ba

a


. 

Let us conclude with two special cases: 

(a) 0a  and 

(b) ba  . 

Case (a) assumes that no reward is given after the response occurs. The difference equation 

(7) becomes  

  011
,...2,1,0



 nn

n

pbp  

with solution  

  01 pbp
n

n  . 

This is an equation which describes the steady decrease in response probability (as n ) 

from initial probability 0p . 
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In case (b), ba  , the measures of reward and punishment are equal. If extreme cases 

0 ba  and 1 ba   are discounted, then the quantity   01 
n

ba  as n  and 

solution (10) shows that 
ba

a
pn


 , which equal to 

2

1
 in case (b), ba   That is, ultimately 

the response tends to occur (in the specified time interval after stimulus is presented) in half 

the trials. The balancing of reward and punishment forces produces, in the long run, a 

corresponding symmetry in performance. 

 

Conclusion 

A large number of examples of this kind leads to a mathematical analysis involving difference 

equations. Mathematical modeling has been used to solve problems not only in engineering 

and physics, but also in biology and psychology. Most mathematics questions are neat and 

pure and simple. But the real world is often "messy". There are facts that get in the way, the 

numbers don't always work out nicely, we have to convert answers to different units and so 

on. Mathematical modeling is a process of representing real world problems in mathematical 

terms in an attempt to find solutions to the problems.  A mathematical model can be 

considered as a simplification or abstraction of a (complex) real world problem or situation 

into a mathematical form, thereby converting the real world problem into a mathematical 

problem.  The mathematical problem can then be solved using whatever known techniques to 

obtain a mathematical solution.  This solution is then interpreted and translated into real 

terms. (Arora & Rogerson, 1991) The crucial problems of justifying the assumptions to be 

made and of testing usefulness of this particular mode of analysis in the social sciences are 

not within our purview. These are problems for the social scientist, not the mathematician. 
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