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RATIO ESTIMATORS USING CHARACTERISTICS OF 
POISSON DISTRIBUTION WITH APPLICATION TO 

EARTHQUAKE DATA 
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Abstract 

Natural populations in biology, genetics, education, engineering, insurance, marketing, 

seismology, social science, and survival analysis are extremely large; consequently, sampling 

methods have to be conducted for characterizing those populations. Ratio estimators are 

commonly used to obtain more efficient estimates for the population mean if the study 

variable is highly correlated with the auxiliary variable. It is well known that the use of the 

population information of auxiliary variable x improves the precision of the estimate(s) of the 

parameter(s). Ratio estimators are based on a sample whose distribution is not considered. 

However, there are situations in which Poisson distributed population may be appropriate. 

This paper proposes generalized class of ratio estimators from Poisson distributed population. 

The mean square error (MSE) equations of proposed estimators are compared in application 

with usual ratio estimator. By these comparisons, we find that ratio estimators using Poisson 

distribution characteristics as auxiliary variable information is better than usual ratio 

estimators. The conditions are also found that proposed estimators are more efficient. The 

findings are supported by numerical illustration with earthquake data of Turkey. 

 
Key words:  Ratio-type estimators; Simple random sampling; Mean square error; Poisson 

distribution; Efficiency. 
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Introduction  

Simple random sampling (SRS) from a finite population has attracted much of the 

researchers and practitioners working in surveys. Ratio estimators are commonly used in the 

SRS to obtain more efficient estimates for the population mean if the study variable is highly 

correlated with the auxiliary variable. It is well known that the use of the population 

information of auxiliary variable x improves the precision of the estimate(s) of the 

parameter(s) in the SRS. Several authors including Sisodia and Dwivedi (1981), Upadhyaya 

and Singh (1999), Kadilar and Cingi (2004), Gupta and Shabbir (2007, 2008), Koyuncu and 

Kadilar (2009), Singh and Vishwakarma (2010), Shabbir and Gupta (2011), obtained a large 
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number of improved ratio estimators/classes of estimators for the population mean Y  of the 

study variable y using auxiliary variable information in the SRS. The problem of estimating 

the population mean or total in the presence of an auxiliary variable has been widely 

discussed in the SRS without considering the distribution. However, the Poisson distribution 

is generally used for the natural populations to express the probability of a given number of 

rare events and there has been no effort devoted to the development of ratio estimators for a 

Poisson distributed population. Non-existence of the ratio estimators for the Poisson 

distributed sample obstacles usage of them in sampling theory itself and its applications (Ozel 

and Inal, 2008). The aim of this study is to derive new ratio estimators for the population 

mean from a Poisson distributed population. We also examine the behavior of the estimators 

of mean for the ratio estimators in the SRS. The earthquake data is used for the numerical 

example since earthquakes are rare events and generally follows a Poisson distribution (Ozel, 

2011a). 

 

1 Suggested Estimators for the Poisson Distributed Population 

 

Consider a finite population )u,...,u,u(U N21  consisting of N identifiable and distinct units. 

Let y and x, respectively, be the study and auxiliary variables associated with each unit ju  

)N,...,2 ,1j(   of the population. Assume that X’s are known units and Y’s are unknown units 

for all the population. Suppose that a sample of size n is selected according to the SRS. The 

nature of the sampling distribution depends on the nature of the population from which the 

random sample is drawn. Let us assume that the parent population has a Poisson distribution. 

This means that the random samples which are drawn from a Poisson distributed population 

follow also a Poisson distribution. Then, let us select the observations ) x,y( ii , n,....,2 ,1i   

from a Poisson distributed population. By this way, we suggest that the following a 

generalized class of ratio estimators for the population mean of the study variable from 

Poisson distributed population as popo

po

po
XR̂)bXa(

bxa

y



  where 0bxa po  , 

bxa

y
R̂

po

po

po


 , bXaXpo  . Here, n/yy
n

1i
ipo 



 , n/xx
n

1i
ipo 



  are the sample means of 

the study and auxiliary variables from Poisson distributed population, respectively. Note that 

)b,a(  are either constants or function of known parameters of the population such as 1a   or 

xC , )x(1 , )x(2 , 
popoyx , and xD . As mentioned before, the index of dispersion is used for 

the first time in sampling theory for the auxiliary variable information. Let the auxiliary 
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variable x has a Poisson distribution with parameter 01  , then X , xS , xC , xD , )x(1 , and 

)x(2  of the auxiliary variable x are given by                                                                  
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  for the Poisson distributed 

population. Let the study variable y has a Poisson distribution with parameter 2  and let the 

auxiliary variable has a Poisson distribution with paramater 1 , then the coefficient of 

correlation between the study variable y and auxiliary variable x  is obtained by the trivariate 

reduction method (Ozel, 2011b). A bivariate Poisson distribution of y and x is generated by 

setting iii zmx   and iii zwy  , n,....,2 ,1i  . Assuming that the parameters of m, w, 

and z are 1 , 2 , and 3 , the coefficient of the correlation between y and x equals 
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y  . An obvious properties of 

popoyx  is that the correlation is restricted to 

be strictly positive since 1 , 2 , and 03  . Since we select the observations ) x,y( ii , 

n,....,2 ,1i   from a Poisson distributed population with parameters 1  and 2 , then we get  
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estimator can be found using Taylor series method defined as  
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d
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where poR̂)y,x(g   and poR)Y,X(g  . Eq. (3) can be applied to the generalized class of 

ratio estimators in order to obtain the MSE equation and we have 
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3 Efficiency Comparisons 

The ratio estimators presented in Table 1 will be compared with each other according to their 

MSE equations in the theory.  
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We first compare i , ,6 ..., ,1i   for 1a   with j , 26,...,7j  , for 1a   in Table 1 to obtain 

the efficiency comparison as follows:  

 

                                                )(MSE)(MSE ji  .                                                              (6)                                        

Using Eq. (5), we can write  
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.This condition is always satisfied since poR , 1 , 2  are always 

positive when 1a  , 0
popoyx   and .0 , , 321    Hence, we can infer that the proposed ratio 

estimators j , 26,...,7j   are more efficient than the estimators i , 6,...,1i   using the 

auxiliary variable information.  

 

5. Numerical Illustration 

 
In the study, we consider the earthquake data of Turkey for the numerical comparisons of 

the proposed and other ratio estimators in the SRS. We consider mainshocks that occured in 

Turkey between 1900 and 2011 having surface wave magnitudes 0.5MS  , their foreshocks 

within five days with 0.3MS   and aftershocks within one month with 0.4MS  . In this 

area, 120 mainshocks with surface magnitude 0.5MS   have occured between 1900 and 

2011. The population consists of the destructive earthquakes. In the population data set the 

number of aftershocks is a study variable and the number of foreshocks is an auxiliary 

variable. The MSE values of usual ratio estimators 17 ,...,1r ,t r   and  t,...,t 9PR1PR are 

obtained from Eq. (4) without considering the distributions of the study and auxiliary 

variables. The summary statistics for the population are given. Then, the MSE values of the 

proposed estimators )..., ,( 261   are computed from Eq. (5) with considering the distributions 

of the study and auxiliary variables. Several studies modeled earthquakes as a Poisson 

distribution (Ozel, 2011a, b). To obtain the distribution of these variables, we fit Poisson 
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distribution to the earthquake dataset. The Poisson distribution provided an adequate fit with 

p-value <0.01 and chi-square value )964.0( 2   for the goodness of fit test. This means that 

the Poisson distribution with parameter 925.61   (year) fits the probability function of the 

auxiliary variable and the expected number of foreshocks of a main shock approximately 

equals to seven per year. After obtaining the frequency distribution of aftershocks and 

goodness of fit test 964.0( 2  , p-value= <0.01), it is seen that the study variable has a 

Poisson distribution with parameter 216.102  . The summary statistics for the Poisson 

distributed population are given. To obtain 
popoyx  for the Poisson distributed data, Turkey is 

divided into three main neotectonic domains based on the neotectonic zones of Turkey. The 

foreshocks in Turkey are separated according to these neotectonic zones. By this way, the 

parameters 1 , 2 , and 3  are obtained. According to the goodness of fit test, it is seen that 

the Poisson distribution fits the number of shocks for area Region 1 with parameter 

813.41   0.043)value-p ,048.0( 2  , with parameter 104.82   ,014.0( 2   

0.032)value-p   for Region 2, and 112.23   0.025)value-p ,013.0( 2   for Region 3. 

Then, the correlation between the study variable and auxiliary variable is positive 

( 712.0
popo yx  ) and it can said that the number of foreshocks is related to the number of 

aftershocks. Therefore, the ratio estimators can be used for the estimation of the population 

mean in the SRS. The MSE values of the usual ratio estimators 17 ,...,1r ,t r   and 

 t,...,t 9PR1PR are obtained and the proposed mean estimators )..., ,( 261   are computed using 

SRS and Table 2.  
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Table 2 Rpo values and MSE equations for the ratio estimators of the Poisson distributed 

population 

Ratio Estimators poR  MSE Equations 
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We use the following expression to find the relative efficiency (RE) of ratio estimators 

using the characteristics of Poisson distribution when compared with the usual ratio 

estimators. Then, the proposed and usual ratio estimators are compared with respect to their 

MSE and RE values. We found that (i) the proposed   family ratio estimators using 

characteristics of Poisson distribution perform better than usual t family usual ratio estimators, 

(ii) the relative efficiency of the proposed   family ratio estimators are approximately 56 

times more than the usual ratio estimators for the Poisson distributed data, (iii) the largest gain 

in efficiency is observed by using )x(2  and xD  with )x(2  if inter-group comparison of for 

the proposed estimators is done for the Poisson distributed data., (iv) the MSE value of the 

proposed t-family ratio estimator using xC  and xD  together is smaller than the other usual t-

family ratio estimators, (v) the proposed ratio estimators )..., ( 2623   have the same value of 

MSE with 52 ,...,  since 1Dx  . However, if there is a population for different distributed 

populations, index of dispersion will differ from 1. In such a case 2623 ...,   yield different 

MSE values from 52 ,..., . Thus the class of the proposed ratio estimators is to be preferred 

to usual ratio estimators for the Poisson distributed population in the SRS.  
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Conclusion 
 
In this study, first we suggested ratio estimators for the population mean using index of 

dispersion as an auxiliary variable. Then, we have developed new ratio estimators using 

characteristics of Poisson distributed auxiliary variable for the population mean in SRS and 

obtained their MSE equations. Different classes of ratio estimators are also proposed using the 

auxiliary variable information with considering the distribution of population. By MSE 

equations and RE values, the MSE values are compared and it is found that the proposed   

family estimators are always more efficient than the usual t-family estimators for the Poisson 

distributed earthquake data. This theoretical result is also supported by a numerical example 

based on an earthquake data of Turkey. In the forthcoming studies, we hope to develop new 

estimators for the population mean for the Poisson distributed population using other 

sampling methods.  
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