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HEURISTIC OPTIMIZATION TECHNIQUES FOR SOLVING 

THE OPTIMAL PARTITIONING PROBLEM 

Nikola Kaspříková 

Abstract 

Many data analysis tasks involve solving an optimization problem where the objective 

function has such properties that the problem can not be conveniently solved using the 

conventional analytical optimization methods. The problem of a search for optimal grouping 

of data is addressed in this paper, where the average silhouette width is used as the objective 

function. An application of two general purpose trajectory based heuristic optimization 

methods for the analysis of a real world dataset is shown and the behaviour of the algorithms 

in response to the values of the control parameters is assessed. The behaviour of the local 

search method, which is a special case of the more general threshold accepting algorithm, is 

determined by the function which is used for obtaining the next (neighbour) solution 

candidate and the performance of the threshold accepting algorithm is further influenced by 

the threshold values. Both these simple trajectory based methods can be easily implemented 

and the results of the experiments suggest that the algorithms perform well. 
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Introduction  

Many economic optimization problems are difficult to solve analytically (as there may be 

multiple local optima or there are other undesirable properties) and one has to resort to 

heuristic techniques, which may reach some suitable solution, even though not necessarily 

always the optimal one, within reasonable time. Heuristic optimization methods may include 

trajectory-based methods or the population-based methods (see e.g. Gilli et al. (2011)).  

Trajectory-based methods work with just one solution, which may be modified in every 

iteration. Trajectory-based methods include the simulated annealing method, local search or 

threshold accepting. The population-based methods are methods which work with the 

population of solutions in every iteration, which is often called a generation. Evolutionary 

algorithms include the particle swarm optimization or the differential evolution method  

which was  introduced by Storn and Price (1997).  
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Such computationally intensive methods have recently become popular thanks to the rise 

of the available computation power. In some cases, the values of the control parameters of 

these general purpose algorithms have to be tuned for the particular problem at hand (as there 

does not seem to be the rule for setting the optimal values of these parameters which would be 

suitable for all the problems). Regarding the differential evolution method, the control 

parameters of the algorithm include the size of the population, the probability of crossover 

and the step size. The local search and the threshold accepting methods as the trajectory-based 

methods require a specification of the way how the next solution to be considered should be 

obtained. The threshold accepting method further requires the threshold values. 

The problem of finding optimal partitioning of multivariate data with respect to particular 

objective function with the use of selected heuristic algorithms – the local search method and 

the threshold accepting method - is addressed in this paper. The average silhouette width is 

used as the objective function and the results of the application of the two simple general 

purpose heuristic methods are evaluated. 

The organization of the paper is as follows: after a brief introduction to the field of 

unsupervised classification, the principles of the selected heuristic optimization methods, the 

local search method and the threshold accepting method, are recalled and the description of 

the data set used in the analysis is provided in the Material and Methods section. Then the 

results of the analysis are reported. 

1 Material and Methods 

The dataset used in the analysis has 110 cases and 5 variables and it refers to the performance 

of undergraduate university students in particular items in the test in mathematics. More 

details about the data are described in (Kaspříková, 2012), results of an elementary descriptive 

statistical analysis of examination tests and a prediction model for total score is given in 

(Kaspříková, 2011) and the analysis is further extended using the IRT models framework in 

(Kaspříková, 2012b). The data in this paper is analyzed with the aim to learn if there is some 

natural grouping of students regarding the performance in the test. The variables have 

comparable scales and no data transformations of the original values were applied for the 

analysis. 

1.1 Clustering 

The cluster analysis, or the unsupervised classification task, usually aims at the discovery of 

the best (whatever it is supposed to mean exactly) groupings of the cases included in the 

analysis in such a way, that the cases in the same cluster are rather similar (and again the 
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question may be what the (dis)similarity is supposed to mean), whereas the cases from the 

different clusters are not.  

 

There exist many algorithms for solving this problem; one commonly used clustering of such 

methods is given by Venables and Ripley (2002). The partitioning (i. e. not hierarchical) 

methods are considered in this analysis and the alternative methods for the algorithms applied 

include the methods such as the k-means or the partitioning around medoids. 

The results of the clustering may be influenced by the choice of the distance measure. The 

usual 2 norm is used in this analysis. 

1.2 The Objective Function  

There exist several reasonable objective functions for evaluation of the quality of the 

clustering model when the partitioning clustering methods are used. One of the possibilities is 

to choose the average silhouette width.  For the definition of the average silhouette width see 

the original sources, such as (Rousseeuw et al., 1996).  

1.3 The Threshold Accepting and the Local Search Methods 

The threshold accepting method has quite broad field of applications, which include e.g. the 

search for optimal pooling of the deals for the purpose of the credit risk management within 

the Basel regulatory rules – see (Lyra et al., 2010). This optimization heuristic method has 

been introduced in (Dueck and Schauer, 1990) and it operates using the following general 

scheme for minimization of the objective function OF: 

1. the initial solution x0 is generated and the current solution xc is assigned the value x0 

2.  repeat until the limit of the number of iterations is reached: 

1. generate new (neighbour) candidate solution xn 

2. if OF(xc) + t > OF(xn)  set xc <-- xn, otherwise keep the current xc 

      3. return the best xc overall 

The control parameters of the threshold accepting algorithm include the (non-negative) 

threshold value t (which may depend on the iteration number). 

The function for obtaining the neighbour (i. e. next candidate) solution has to be chosen for 

the particular task being solved and it has to be supplied by the user. In this analysis a simple 

function was used. The solution was represented by four cases of the dataset (initial solution 

was selected at random) and the remaining cases were then assigned to the most similar case 
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when building the groups. To obtain the neighbour solution, first the component (1st, 2nd, 3rd 

or 4.) of the current solution to be changed was chosen at random and then the selected 

component was replaced by another case, chosen at random.  

 The local search method may be considered to be a special case of the threshold accepting 

method with the threshold value set to 0. 

 We use the implementation of the threshold accepting and the local search methods available 

in NMOF package (Gilli et al. 2011) in the R computing environment (R Core Team, 2013). 

Since the objective function is minimized in this implementation (as is the usual approach), 

the average silhouette width (available in the cluster package in R) was always multiplied by  

-1. 

Results 

The optimal clustering with up to 4 clusters has been searched for. The solutions with just a 

single cluster have been penalized through setting the objective function value to 0 for this 

case. The use of the heuristic methods allows an automatic choice of the most suitable number 

of groups (2, 3 or 4).  

Both the application of the threshold accepting method and the local search method resulted 

in a two clusters solutions. The values of the control parameters for the algorithms did not 

have any strong impact on the results. The average silhouette width for the final solution 

obtained by the local search with 1000 iterations is 0.38055 (see Figure 1 which shows how 

the objective function value changes with the iteration number). 

For the threshold accepting with the following parameters: 

- the threshold values sequence: ts = 0.05, 0.05, 0.025,0.025,0.01,0.01,0.01,0.01,0.01,0.01 

- number of iterations  per threshold value: 100 , i. e. with 1000 iterations in total, 

the average silhouette width is  0.38496 (see Figure 2). So the threshold accepting method did 

a better job. Nevertheless, the results may be different if other threshold sequence is chosen – 

for example using the threshold value sequence 0.05,0.05,0.04,0.03,0.02,0.02,0.01,0.01, 

0.01,0.01 resulted in the average silhouette width value of just 0.37481. 

On the other hand, increasing the number of iterations per threshold value from the original 

value 100 to 1000, keeping the original threshold values sequence ts, allows reaching a better 

solution – the average silhouette width of such solution is 0.39236 (see Figure 3). But the run 

time of the computation is significantly higher.  
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Fig. 1: Local search 

 

Source: own work 

Let’s consider the partitioning obtained with the threshold accepting algorithm with the 

threshold values sequence ts and 100 iterations per the threshold value as the final 

partitioning. The final partitioning gives the average silhouette width 0.38496, which is 

superior to the solution obtained with the standard implementation of the k-means method (in 

the stats package in R), which gives the average silhouette width for a two clusters solution 

0.3790; 0.3371 for 3 clusters solution and 0.2982 for 4 clusters solution. Similarly for the 

partitioning around medoids method (in the cluster package in R), which gives 0.3079, 0.3388 

and 0.2936 respectively. But note that the standard implementations of these algorithms aim 

at optimizing a different objective. 
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Fig. 2: Threshold accepting 

 

Source: own work 

Conclusion  

It was shown that both the threshold accepting method and the local search method are 

suitable for solving the optimal partitioning problem. These methods allow supplying easily 

the objective function preferred by the user and reach the solution quite quickly. The 

procedures can automatically determine the best number of clusters, which is also an 

advantage. The quality of the resulting classification was better when using the threshold 

accepting method with a good choice of values of the control parameters than when using the 

local search method.  
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Fig. 3: Threshold accepting with 1000 iterations per threshold value 

 

Source: own work 
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