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Abstract 

The article briefly discusses the need to find causal mechanisms in the areas of  

electromagnetic, gravitational, and nuclear strong force interactions to explain phenomena 

observed in socio-physical systems. Linear and non-linear kinematic equations of motion are 

derived for economically variable socio-physical systems. The methodology of non-

relativistic theoretical mechanics is used to derive these deterministic kinematic equations. 

A deterministic linear equations of motion of the second order are derived to describe the 

degressive and progressive development of the instantaneous relative depreciation of 

a commodity over time in a convergent sequence of models of market structures with perfect 

competition. The same approach is used to derive a linear motion equations of the second 

order to describe the degressive and progressive development of instantaneous relative price 

of a commodity over time in a convergent sequence of models of market structures with 

perfect competition. To model the progressive/degressive development of the immediate 

relative depreciation of a commodity over time, a deterministic non-linear motion equation 

of the second order is derived. 
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Introduction 

The systematic use of methods of theoretical and mathematical physics in basic and applied 

research in the development of the states of economic systems can be relatively reliably traced 

to the end of the first half of the 19th century and especially for the Cambridge and Lausanne 

Schools of Economics (Zeithamer, 2012a).  

Economic phenomena and processes at that time were described and analyzed using analogies 

between the evolution of physical systems and the evolution of economic systems. 

Biographical research has shown that one of the reasons for the successful application of 

theoretical physics in economics is that many economists had initially studied physical and 
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mathematical sciences, or fields related to the physical or mathematical sciences (Zeithamer, 

2012a). 

The gradual spread of methods taken from theoretical and mathematical physics to economics 

during the 19th and especially the 20th century eventually led to the beginning of basic 

theoretical research, which in the 21st century consists of the systematically targeted 

application of theoretical, mathematical and statistical physics to economics (Mantegna & 

Stanley, 2000; McCauley, 2004; Chakrabarti, Chakraborti & Chaterjee, 2006; Drozen 2008; 

Voit, 2010; Zeithamer, 2012b). A part of this basic theoretical research in economics has 

become known as econophysics. Great confidence in the power of mathematical statistics, 

which is justified in measuring techniques (James, 2010; Štroner & Pospisil, 2011), is 

somewhat weakened by works which, based on detailed knowledge of statistical methods and 

their use in physics itself, come to the conclusion that it is not possible using statistics alone to 

determine the causal mechanisms that explain observed phenomena in economics 

(Chakrabarti, Chakraborti & Chaterjee, 2006; Roehner, 2002, 2007). 

We also encounter this state of knowledge in the interdisciplinary field of Sun-Earth relations 

on the physical and biophysical level. Other related scientific fields include the physics of the 

heliomagnetosphere and magnetosphere of planets in the Solar System,  meteorology of the 

Earth’s atmosphere and the atmosphere of planets in the Solar System.  

Finding causal mechanisms which explain observed socio-physical phenomena on a level of 

gravitational, electromagnetic or nuclear interactions is a very difficult, long and costly task.  

The same applies to the education of experts in commodity price theory, thoroughly based on 

the knowledge of basic physical force interactions.  The theoretical constructions presented in 

this work are intended to facilitate solving both tasks mentioned in future modern commodity 

price theory.  Specifically, there are linear and non-linear elementary kinematic equations, 

which do not explain the phenomena observed in the socio-physical system with interactions 

of force, but merely describe the developing state of the socio-physical system. These 

kinematic equations lead to quantifiable mechanisms which explain observed development in 

the state of the socio-physical system using analytical dynamics, i.e. force interactions.  

The analytical dynamics of socio-physical systems is not the subject of this work, however, it 

is one of the subjects of basic and applied economic and physical research being conducted by 

the author. 
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1 Linear motion equation of commodity state without inflexion  

The late nineteenth century is a period in which there was a synthesis of the partial knowledge 

of economic laws formulated by the previous generation of economists, and increased 

attempts to describe these laws using the language of physics and mathematics, comprising 

both the mathematical and physical meaning of the differential of variable quantities; the 

foundations of “econophysics in the broader sense” were laid and expanded (Zeithamer, 

2012a). 

The first half of the twentieth century witnessed a deepening integration of economics, 

mathematics, and physics. At the Czech School of Economics during this time, no reliable 

sources have yet been found indicating such an interdisciplinary approach or related original 

work. At the end of the twentieth century however, we do find an economist at the Czech 

School of Economics whose work represents econophysics in the broader sense. This 

economist is František Drozen  (born 30. 5. 1949), who was inspired by the work of German 

engineer August Wöhler (22. 6. 1819 – 21.3.1914). František  Drozen constructed an analogy 

between the process of fatigue crack growth in axles and the process of price reduction for 

goods. This approach to modeling the process of falling prices for goods can be found in its 

final form in several of Drozen’s works (Drozen, 2003, 2008). 

In this work it is assumed, as in Drozen’s works (Drozen, 2003, 2008), that the market 

value of a commodity is quantified only by the market price n of the commodity.   

We now make the generalizing assumption that the instantaneous acceleration of 

reduction of the market value is directly proportional to the instantaneous rate of reduction 

of the market value (Zeithamer 2010). Then the deterministic differential equation of price 

which expresses this model is 

   t
dt

d
At

dt

d nn


2

2

,  (1) 

where 0A  is the proportionality constant, and a negative sign is used to indicate that �, the 

market value of commodity, i.e., a price, is decreasing and the acceleration of reduction of 

the market value decreases over time. The initial conditions now are that over time t = 0 

the market value is   0nn 0  and   0r
n

0
dt

d
 < 0. A more detailed approach to modeling the 

process of falling prices with acceleration can be found in the following works (Zeithamer 

2010, 2011a, 2011b, 2012b). 
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2 Linear motion equation of commodity relative depreciation 

In a convergent sequence of market structures with perfect competition, the instantaneous 

commodity relative depreciation RD is defined by the magnitudes of instantaneous 

commodity relative depreciation according to the relationship (Drozen, 2008; Zeithamer, 

2011b) 

                    
 0

0

tw

twtw
tRD


 ,       (2) 

where   00 wtw   is the magnitude of instantaneous commodity depreciation at the initial time 

0t  and  tw  is the magnitude of instantaneous commodity depreciation at time  0ttt  . 

In addition to instantaneous commodity relative depreciation RD , the instantaneous 

commodity relative price RP  is also defined under the condition of perfect competition by 

the magnitudes  tRP  at time t  according to the relationship (Drozen, 2008; Zeithamer, 

2011b)  

     
 0

0

tp

tptp
tRP


 ,           (3) 

where   00 ptp   is the magnitude of instantaneous commodity price p at the initial time 0t  

of monitoring the instantaneous commodity price on a select model market and  tp  is the 

magnitude of instantaneous commodity price at time 0tt  . 

Instantaneous commodity depreciation � is a real composite function of time, i.e. 

    tpwtw  , where  pw  is the continuous decreasing real function of instantaneous 

commodity price p and instantaneous commodity price p is a continuous decreasing real 

function of time t. If we monitor the development of instantaneous commodity depreciation at 

time interval et,t0 , then for the first derivation of functions  pw  and  tp  it holds that 

  0p
dp

dw
 for    0tp,tpp e  and   0t

dt

dp
 for et,tt 0 . It directly follows from these 

relationships that for the interval et,t0 ,     tp
dp

dw
t

dt

dw
 .   0t

dt

dp
. This means that 

instantaneous commodity depreciation w is a continuous increasing real function of time t, 

which corresponds to trends for common commodities over time. Then, instantaneous 
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commodity relative depreciation RD is also a continuous real function at interval et,t0 and 

  0t
dt

dRD
 for every time  et,tt 0 .  

Let us assume that the magnitude of instantaneous commodity relative depreciation  

RD over time t increases with acceleration and the acceleration of instantaneous commodity 

relative depreciation increases in direct proportion to the instantaneous speed of change 

of instantaneous commodity relative depreciation at time t. The motion equation 

of instantaneous commodity relative depreciation is thus (Zeithamer, 2011b) 

   t
dt

dRD
Bt

dt

RDd


2

2

,    (4) 

where B is the constant of proportionality, 0B . In addition, let initial conditions be met 

where   000  RDtRD ,   000 t
dt

dRD
, so that the solution of differential equation (3) 

at interval et,t0  is then 

   
000

0
ttBe

BB
RDtRD 


.     (5) 

From here it directly follows that instantaneous commodity relative depreciation RD is 

a purely convex function at interval et,t0 . This means that the increase in instantaneous 

commodity relative depreciation at interval et,t0  is progressive.  

Let us assume that instantaneous commodity relative depreciation RD increases with 

acceleration at time t again and the acceleration of instantaneous commodity relative 

depreciation increases in direct proportion to the speed of change of relative depreciation at 

time t while the constant of proportionality is negative. The motion equation of instantaneous 

commodity relative depreciation is then (Zeithamer, 2011a; Zeithamer, 2011b)  

   t
dt

dRD
Bt

dt

RDd


2

2

,   (6) 

where  B  is the constant of proportionality, 0B . In addition, let initial conditions be met 

where   000  RDtRD ,   000 t
dt

dRD
, so that the solution of the differential equation 

(5) at interval 〈��, ��〉 is then 

   
000

0
ttBe

BB
RDtRD 


.   (7) 
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From here it directly follows that instantaneous commodity relative depreciation RD is 

a purely concave function at interval et,t0 . This means that the increase in instantaneous 

commodity relative depreciation at interval et,t0  is degressive. The progressive increase of 

instantaneous commodity relative depreciation is characteristic, for example, of certain types 

of food goods, while degressive increase of relative depreciation may be seen in certain 

commodities in the automotive industry. The same approach is used to derive a motion 

equation for the degressive and progressive development of the instantaneous relative price of 

a commodity over time.  

 

3 Non-linear motion equation of commodity state with inflexion 

In this section of our work we again presume the following conditions to be met: (1) the 

commodity is on one of the markets of the model of market structure with perfect competition 

at initial time 0t ; (2) at time 0t  the commodity is found in its initial state, which is uniquely 

determined by the magnitude of instantaneous commodity depreciation   00 wtw  . 

Let the acceleration of 
2

2

dt

RDd
 of the instantaneous commodity relative depreciation 

be the sum of two components, i.e. 

2
2

2

1
2

2

2

2
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













dt

RDd

dt

RDd

dt

RDd
,  (8) 

The first component of acceleration is a consequence of physical and chemical processes, 

which cause the first component of the instantaneous acceleration to increase in direct 

proportion to the magnitudes of rate of change of the instantaneous commodity relative 

depreciation, i.e.  

   t
dt

dRD
Bt

dt

RDd
















1
2

2

,  (9) 

where � is the proportionality constant, 0B  and et,tt 0 . The second component 

of acceleration results from socio-psychological processes (in physical and chemical 

approximation), which cause the second component of the instantaneous acceleration to be 

directly proportional to the product of the magnitude of rate of change of the instantaneous 
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commodity relative depreciation  t
dt

dRD
 and the magnitude of instantaneous commodity  

relative depreciation  tRD , while the proportionality constant is negative, thus 

     tRDt
dt

dRD
At

dt

RDd
















2
2

2
,  (10) 

where  A  is the proportionality constant, 0A , et,tt 0 . 

By substituting relations (9) and (10) into equation (8), we obtain the following motion 

equation for the acceleration of instantaneous commodity relative depreciation (Zeithamer, 

2012b) 

       tRDt
dt

dRD
At

dt

dRD
Bt

dt

RDd


2

2

,  (11) 

where 0A , 0B , et,tt 0 . 

One of the subsets of the set of solutions for motion equation (11) is given by 

 
 

 
2

2

1
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CtD
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e
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tRD








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where for constants 221 C,y,y,D  it follows that 1
2 2ACBD  , 

A

DB
y


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A
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y
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D
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



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





1

2
2

1
. At time pt  the 

value of instantaneous commodity relative depreciation is zero. The given subset 

of the solutions of motion equation (11) shows the progressive – degressive increase of 

instantaneous commodity relative depreciation with an inflexion point at time 2Ct   and 

a limit at   1ytRDlimt  . 

 

Conclusion  

Assuming that the market value of the commodity at time t is fully determined exclusively by 

the value of the instantaneous commodity price  tp , methodological procedures taken from 

theoretical physics were used to construct motion equations for instantaneous commodity 

relative depreciation RD.  Motion equations (4) and (6) for the progressive and degressive 

increase of instantaneous commodity relative depreciation are linear differential equations of 
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the second order with constant coefficients assuming market structures with perfect 

competition.  Motion equation (11) of instantaneous commodity relative depreciation for 

the progressive/degressive growth of depreciation is a non-linear differential equation of the 

second order with constant coefficients.  Motion equation (11) was also derived for 

instantaneous commodity relative depreciation on a sequence of markets with perfect 

competition.  In the solutions set for motion equation (11), there is the subset of solutions 

which model progressive/degressive growth of the magnitudes of instantaneous commodity 

relative depreciation with a single inflexion point. 
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