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TWO-SAMPLE DENSITY-BASED EMPIRICAL LIKELIHOOD 

TESTS FOR STOCHASTICALLY ORDERED 

ALTERNATIVES 

Gregory Gurevich   

 

Abstract 

The empirical likelihood method based on the empirical distribution functions is a well-

accepted statistical tool for testing. Recently, the density-based empirical likelihood technique 

was proposed and applied successfully to construct a powerful two-sample nonparametric 

likelihood ratio test based on samples entropy. However, while the problem of one-sided 

alternatives has received considerable attention in the case of the likelihood ratio tests, the 

two-sample density-based empirical likelihood test was proposed only in the context of the 

two-sided alternative. Hence, it is not suitable for a variety of applied statistical problems 

where the one-sided test should be driven by the scientific question and the data analyzed. In 

this paper we show how one-sample density-based empirical likelihood tests can be 

constructed and provide a proof of their consistency. Monte Carlo simulations confirm that 

the proposed one-sided nonparametric tests have approximately same powers as that of the 

Wilcoxon test detecting a constant shift in the one-sided two-sample problem and are 

preferable to the Wilcoxon test detecting a nonconstant shift.   

Key words:  Density-based empirical likelihood, Two-sample location problem, Paired data, 

Wilcoxon test 

JEL Code:  C14, C12 

 

Introduction 

The likelihood principle is arguably the most important concept for inference in parametric 

models. Recently it has also been shown to be useful in nonparametric contexts (e.g., Qin and 

Lawless, 1994; Lazar and Mykland, 1998; Owen, 2001; Lazar, 2003; Vexler and Gurevich, 

2010a, 2010b; Vexler et al., 2012a, 2012b). Let 1,..., ~kX X F  be a sample of independent 

identically distributed observations where F  is some distribution with a density function 
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 f x . The Empirical Likelihood (EL) function has the form of  


k

i ip pL
1

, where the 

components ip , ki ,...,1 ‚ maximize pL  and satisfy empirical constraints corresponding to 

hypotheses of interest. For example, if the null hypothesis is   0 : 10 XEH , then the values 

of ip ’s in the 0H -empirical likelihood pL  should be chosen to maximize pL  given 

1
1

 

k

i ip  and 0
1

 

k

i ii Xp ,
 
where the constraint 0

1
 

k

i ii Xp  is an empirical version of 

  01 XE . Computation of ip , ki ,...,1 ‚ is based on a simple exercise in Lagrange 

multipliers. This nonparametric approach is a result of consideration of the ‘distribution 

functions’-based likelihood      


k

i ii XFXF
1

 over all distribution functions F  (see, for 

details, Owen, 2001). Vexler and Gurevich (2010a, 2010b) proposed to use the central idea of 

the EL technique to develop density-based empirical approximations to the likelihood 

  


k

i if XfL
1

, where  xf  is a density function. To outline this technique, we present the 

likelihood function fL  in the form of       


k

i i

k

i i

k

i if fXfXfL
111

 with 

 )( ii Xff  , and )()2()1( kXXX    are the order statistics derived from kXX ,,1  . 

Following the maximum EL method, we can obtain estimated values of if , ki ,,1 ‚ that 

maximize fL  and satisfy empirical constraints. Obviously, the equation  1)( duuf  

constrains values of if , ki ,,1 . To formalize this constraint, Vexler and Gurevich (2010a) 

proposed the following result.  

Proposition 1. Assume    1XX j  , if 1j , and    kj XX  , if kj  . Then for all integer m, 

we have  
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, Proposition 1 shows that 

1m , as well as, one can expect that 1m , when 0/ km  as km, . While 

approximating  
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, we represent the condition 1m  in the 

empirical form of 
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                                             1
~

m ,   
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2

1~
.                                     (1)     

Deriving if / , ki ,,1 , from the function  mf HL
~

1log    with the Lagrange multiplier 

 , and then solving the resulting equation                                     
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 , we obtain that the values                                                       

     
1

2i i m i m
f m k X X



 
  , ki ,,1 , maximize fLlog , satisfying the constraint (1) (here 

   1XX j  , if 1j , and    kj XX  , if kj  ). Finally, the EL estimate of the likelihood has 

the form of       




 
k

i

mimi XXkm
1

1
2 . Gurevich and Vexler (2011) and Vexler et al. (2012a, 

2012b) utilized the above EL estimate to construct efficient two-sample density-based 

empirical likelihood tests for two-sided alternatives. This paper proceeds as follows. In 

Section 1 we shortly outline the way of constructing the existing EL two-sample test for the 

two-sided alternative (Gurevich and Vexler, 2011). We also extend this test to deal with one-

sided alternatives and prove the consistency of a novel proposed test. In Section 2 we present 

the existing EL two-sample test for paired data (Vexler et al., 2012a, 2012b) and propose its 

modificated forms for one-sided alternatives. The obtained theoretical results and partially 

presented Monte Carlo study confirm the high efficiency of the proposed modified test.  

1 A two-sample density-based empirical likelihood test for the classical 

two-sample problem 

Let nXX ,...,1  and kYY ,...,1  be independent samples that consist of independent identically 

distributed observations from distributions XF  and YF  with density functions  xf X  and 

 yfY , respectively. We are interested to verify if the both samples are from the same 

distribution. 

1.1     A two-sided alternative  

Formally, we want to test for  

                                     ZXY FFFH :0   versus  XY FFH :1 ,                                            (2)                           

where distributions ZF , XF  and YF  are unknown. In this case, the likelihood ratio statistic 

based on all kn   observations has the form of  
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where a density function Zf  corresponds to the null hypothesis,  
)(, iXiX Xff  , 

 
)(, jYjY Yff  , and  )(, iZiZX Xff  ,  , ( )ZY j Z jf f Y , ni ,...,1 , kj ,...,1 ; 

)()2()1( nXXX   , )()2()1( kYYY    are the order statistics based on the observations 

nXX ,,1   and kYY ,,1  , respectively. Gurevich and Vexler (2011) applied the method of the 

density-based EL mentioned in Introduction to estimate iXf , , ni ,...,1 , and ,ZY jf , kj ,...,1 . 

Thus, they derived values of iXf , , ni ,,1  that maximize the likelihood  

n

i iXf1 , , 

satisfying an empirical constraint. Here the equation 1)(  duufX  constrains values of iXf , , 

ni ,,1 . By virtue of Proposition 1,   
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and 1m  when 0/ nm  as nm, . In a similar manner to deriving the constraint (1), 

by applying the approximate analog to the mean-value integration theorem, Gurevich and 

Vexler (2011) approximated m  as 
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is the empirical distribution function that estimates the distribution  uFZ  (  I  is the indicator 

function). Futher considerations presented in Gurevich and Vexler (2011) lead to the EL ratio 

test-statistic 
kYnXnk ELRELRV ,, , where 
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ratio test-statistic nkV  approximates the optimal likelihood ratio test statistic (3). Finally, the 

EL density-based test rejects the null hypothesis of (2) if                                                                      

  CVnk log , where C  is a test-threshold. 

1.2     One-sided alternatives 

Without loss of generality, we consider the following one-sided version of the two-sided 

problem (2)    

                           ZXY FFFH :0   versus                                                                              (9) 

                           1 : ( ) ( )X YH F u F u  for all  u , ( ) ( )X YF u F u  for some   u . 

This formulation means that under 1H , 
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modification of (8). Thus, we propose to reject the null hypothesis of (9) if                         
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                                                            *log nkV C ,                                                                (11)                                    
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(0,0.25)  , and C  is a test-threshold.  

The next proposition indicates that the test (11) is consistent as kn, , kn / , 

where a constant 0 . To formulate the following result, we assume that XF  and YF , 

mentioned in the statement (9), are the continuous cumulative distribution functions with 

density functions Xf  and Yf , respectively. 
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It is clear that, under the null hypothesis, the ratio 1XY ff that implies 0 . Under the 
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. 

Thus, the consistency of the proposed density-based EL test (11) is given by Proposition 2. 

2 A two-sample density-based empirical likelihood test for the paired 

data 

Let ),,( 11 YX …, ),( nn YX  be a random sample from a bivariate population with continuous 

joint distribution function ),( yxFXY and the marginal distributions ( )XF x , ( )YF y of iX and iY , 

respectively. Common statistical procedures for testing the problem (2) consist of the paired t-

test, the sign test and the Wilcoxon signed-rank test. These tests are based on the n paired 

differences iii YXZ  . In the paired data case, the classical nonparametric Wilcoxon 

signed-rank procedure is a permutation based method under the assumption that Z is 

symmetric about zero under the null hypothesis. Similarly, the sign test assumes symmetry 
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about zero under the null hypothesis and utilizes the binomial distribution with respect to 

generating the test procedure. Note that, when parametric forms of the distribution functions 

XF , YF  and XYF  can be assumed to be known, the parametric likelihood ratio can be 

efficiently applied to the problem (2). Alternatively to the classical nonparametric tests, 

Vexler et al. (2012a) developed the procedure presenting the corresponding likelihood ratio 

statistic in an empirical form. This procedure was developed for two-sided alternatives and is 

based on the n paired differences iii YXZ  . Here we outline shortly this method. 

2.1     A two-sided alternative  

Let nZZ ,,1   be independent identically distributed (i.i.d.) random variables with the 

distribution function F . The considered hypotheses testing problem is presented as:  
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The parametric likelihood ratio statistic based on nZZ ,,1  takes the form of 
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where  ufH1
 and  ufH0

 denote the density functions of Z under 1H  and 0H , respectively, 

)()2()1( ... nZZZ   is the order statistic and  , ( )k kH j H jf f Z , 0,1k  , 1, ,j n . The 

nonparametric approximation for the likelihood ratio statistic (13) is obtained by estimating 

the values of njf jH ,,1,,1
 . This is accomplished via maximizing the log-likelihood 
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n

j jHf1 ,1
log  provided that 

1 ,H jf , 1, ,j n , satisfy an empirical constraint that is an 

empirical form of 1)(
1

 duufH . Based on the Proposition 1, by the similar way as described 

in Section 1 and presented in Vexler et al. (2012a)  we formulate this constraint in form of  
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where         ( ) ( ) ( ) ( )

1

1
:

2

n

jm i j m i j m i j m i j m

i

I Z Z I Z Z I Z Z I Z Z
n

   



            is an 

estimator for the difference 
0 0( ) ( )( ) ( )H j m H j mF Z F Z   based on the distribution free estimation 

0

ˆ
HF  for a symmetric distribution 

0HF  proposed by Schuster (1975): 
              

                                           
   

0

1 1

1ˆ ( )
2

n n

H i i

i i

F u I Z u I Z u
n  

 
     

 
  .                                     (15) 

Futher considerations similar to that presented in Vexler et al. (2012a) lead to the following 

approximation of the parametric likelihood ratio statistic (13):  

                                                        
( ) ( )

1

2
min

n

n
a n m b n

j jm

m
V

n 





 ,                                                    (16) 

where 0.5( )a n n  , 1( ) min( , / 2)b n n n , (0,0.25)  . Thus, the EL density-based test rejects 

the null hypothesis of (12) if    CVn log , where C  is a test-threshold. 

2.2     One-sided alternatives  

Without loss of generality, we consider the following one-sided version of the two-sided 

problem (12)    

                            
)(1)(  , :

0000 uFuFFFH HHH  , for all  u versus                  (17) 

                            11 :   HH F F , 
1 1
( ) 1 ( )H HF u F u    for all  u , 

1 1
( ) 1 ( )H HF u F u    for   

some   u . 

This formulation means that under 1H , 
st

Z Z  (that corresponds to 
st

X Y ). In this case we 

propose to apply to (14) the definition 

   
0

1 1

1ˆ̂
( ) max ,

n n

H i i

i i

F u I Z u I Z u
n  

 
    

 
    instead of the definition (15). That is, we define 

   
0 0

*
( ) ( )

ˆ ˆˆ ˆ:jm H j m H j mF Z F Z     as the modification of     
0 0( ) ( )

ˆ ˆ:jm H j m H j mF Z F Z    . Thus, 

the proposed test statistic for the problem (16) has the form 

                                                       

*

*( ) ( )
1

2
min

n

n
a n m b n

j jm

m
V

n 





 ,                                                    (18) 

where 

       *
( ) ( ) ( ) ( )

1 1 1 1

1 1
: max , max ,

n n n n

jm i j m i j m i j m i j m

i i i i

I Z Z I Z Z I Z Z I Z Z
n n

   

   

   
           

   
    , 



 The 6
th

 International Days of Statistics and Economics, Prague, September 13-15, 2012 

 

433 

 

if  * 1
jm

n
   then * 1

jm
n

  ,  0.5( )a n n  , 1( ) min( , / 2)b n n n , (0,0.25)  . The *
nV -test rejects 

the null hypothesis of (17) if                         

                                                               *log nV C ,                                                              (19)                                    

where C  is a test-threshold.  

The consistency of the proposed test (19) is stated in the following proposition.  

Proposition 3. Let  xf  define a density function of the observations nZZ ,...,1  with the finite 

expectations   1log ZfE  and   1logE f Z . Then  

                                            

 
 

 
1*

1

1
log   log

p

n

f Z
V E

n f Z

  
      

  

, as n , 

for all 0 0.25   in the definition (18) of the statistic *
nV . 

It is obvious that the limiting value of  1 *log nn V , the expectation      1

1 1logE f Z f Z


   

stated in Proposition 3, has the forms of      0 0 0

1

1 1log 0H H HE f Z f Z


    and 

           1 1 1 1 1 1

1 1

1 1 1 1log log 0H H H H H HE f Z f Z E f Z f Z
    

        
   

, under 0H  and 1H , 

respectively. This implies that the test (19) is consistent. 

To compare powers of the proposed test (19) with that of the classical Wilcoxon signed-

rank test we conducted a simulation study. We focus on 0.1   applied to the definition (18). 

The Monte Carlo experiments for investigating the power properties of the tests were repeated 

25,000 times. Critical values of the tests were set up to preserve the 5% level of significance 

of the decision rules. The following Table 1 presents the simulated powers of the tests for 

several typical alternatives.  

Table 1: Monte Carlo powers of the test (19) with 0.1   and  and the Wilcoxon signed-

rank test; at the significance level α=0.05, for the sample size 25n  . 
 

ZF  Proposed test (19) Wilcoxon signed-rank test 

 0,1Norm  0.999 0.999 

 0.5,1Norm  0.764 0.775 

 0.25,1Norm  0.324 0.334 

 0.3, 0.7Unif    0.977 0.924 

 0.5,1Unif   0.927 0.826 

 1.5,2.5Unif   0.757 0.619 

2(2,4 )XF LogN , (1,1)YF LogN , Z X Y   0.968 0.776 
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2(2,3 )XF LogN , (1,1)YF LogN , Z X Y   0.952 0.812 

(2,1)XF LogN , (1,1)YF LogN , Z X Y   0.929 0.937 

   Source: own research. 

Thus, the proposed new test clearly shows high and stable power as compared to the classical 

Wilcoxon signed-rank test. 

Conclusion  

The presented method employs the EL concept in a nonparametric fashion in order to 

approximate Neyman-Pearson type parametric likelihood ratio test-statistics for two sample 

problems. The benefit of using this approach is threefold. First, we are able to construct exact 

and robust nonparametric tests. Second, the proposed technique is highly efficient given that it 

approximates well the optimal parametric likelihood ratio. Third, the obtained tests have high 

and stable powers over a variety of alternative distributions, resulting in a large power gain in 

comparison to the classical procedures. We illustrated that the EL method can be easily 

applied to one-sided alternatives, and provided meaningful results. 
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