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Abstract 

From questionnaire survey we frequently get data, their values are expressed in ordinal (e.g. 

Likert) scale. The questionnaire contains usually a lot of questions, so we get 

multidimensional data matrix. To simplify calculations with the data it is useful to reduce 

dimensionality of the dataset. For ordinal data we use different or improved methods 

compared to quantitative data. This article includes the overview and comparison of 

dimensionality reduction methods (e.g. principal component analysis, factor analysis, 

multidimensional scaling, cluster analysis...). From these methods we get groups of similar 

variables (latent classes), in some cases we can create interpretation of these new variables.  

Key words:  ordinal data, dimensionality reduction, latent class models, multidimensional 

scaling, cluster analysis 
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Introduction 

Aim of this theoretical study is to describe data dimensionality reduction methods especially 

for ordinal data. This kind of data we frequently get from questionnaire surveys.  Thus we 

solve the methods to reduce the number of variables characterizing individual objects. From 

big amount of variables (questions) we make new latent variables, which are created by 

groups of original variables. Conventional data dimensionality reduction methods usually 

assume quantitative variables, so we have to use modified or different statistical methods. 

There exist several methods sometimes with different results, so we compare the results from 

various methods. Application of the methods in this text will be usually described in the 

software R. Some methods especially for categorical data are described in detail (latent class 

models). 
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1 Overview of methods 

Basic methods of the data dimensionality reduction are principal component analysis PCA, 

factor analysis FA and multidimensional scaling MDS. Classical FA methods assume linear 

relations among original variables, new latent variables are continuous and normally 

distributed. Conventional factor analysis is usually based on correlation matrix analysis, e.g. 

using rank corellation coefficient. For more details see Hebák (2007).  

Common methods of latent variables identification are latent class models. There exist 

many methods and different methods are available in statistical software packages, e.g. latent 

class cluster models LCC, discrete factor analysis models DFactor, latent trait analysis LTA, 

latent profile analysis LPA, latent class regression models LCR etc. For some of these 

methods in detail see Sobíšek and Řezanková (2011). 

2 Principal component analysis 

Some methods are based on multidimensional space projection into the space with lower 

dimension. Basic method is principal component analysis. The aim is to find real dimension 

of the data. To find real dimensionality original dataset X is transformed to the new coordinate 

system by an orthogonal linear transformation. Let 
S

F  (resp. 
S

G  ) be the vector of the rows 

coordinates (resp. columns) on the axis on rank s. These two vectors are related by the 

transition formula, e. g. in the case of PCA (equations 1 and 2) there are 
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where 
S

F  denotes the coordinate of the individual i on the axis s, 
S

G  denotes the coordinate 

of the variable k on the axis s, 
S

 the eigenvalue associated with the axis s, 
k

m the weight 

associated to the variable k, 
i

p the weight associated to the individual i.  

Suitable count of components goes from the variance, which is explained by the sum 

of the variance of original variables or from screeplot of eigenvalues or from the count of 

eigenvalues, which are higher than 1, if we use correlation matrix instead of covariance 

matrix.  Suitability and limitation of this method consists in the result, when we get from high 

count of variables small count of components with high proportion of explained variability. 
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High dependence of observed variables is also suitable, strong correlation among original 

variables and components too.  

Instead of conventional principal component analysis for quantitative variables it is 

possible to use categorical principal component analysis CATPCA, which transforms 

categorical variables into quantitative variables and does not assume linear relations among 

variables. According to Sebastien et al. (2008) although a PCA applied on categorical data 

would yield results comparable to those obtained from a Multiple Correspondence Analysis 

(factor scores and eigenvalues are linearly related), there are more appropriate techniques to 

deal with mixed data types, namely Multiple Factor Analysis for mixed data available in the 

FactoMineR R package. Multiple Factor Analysis from the same package is also an option. 

3 Multidimensional scaling 

Other method based on multidimensional space projection into the space with lower 

dimension is multidimensional scaling MDS. Setting of axes (dimensions) is similar to PCA 

components setting. Multidimensional scaling is more general than factor analysis, because it 

is based on any relation matrix among variables or individuals. Method MDS is similar to 

cluster analysis, because it uses distance matrix of variables or individuals pairs. This distance 

can be based on similarity measure. Similarity of two variables can be estimated by some of 

mutual symmetric similarity measures. Basic similarity measure of two quantitative variables 

is Pearson correlation coefficient. To measure similarity of ordinal variables it is possible to 

use e.g. Spearman or Kendall rank correlation coeficient or symmetric Sommers coefficient. 

For details see e.g. Hendl (2006). 

According to Holland (2008) nonmetric multidimensional scaling (MDS, also NMDS 

and NMS) is an ordination technique, that differs in several ways from nearly all other 

ordination methods. In most ordination methods, many axes are calculated, but only a few are 

viewed, owing to graphical limitations. In MDS, a small number of axes are explicitly chosen 

prior to the analysis and the data are fitted to those dimensions; there are no hidden axes of 

variation. Second, most other ordination methods are analytical and therefore result in a single 

unique solution to a set of data. In contrast, MDS is a numerical technique, that iteratively 

seeks a solution and stops computation when an acceptable solution has been found, or it 

stops after some pre-specified number of attempts. As a result, an MDS ordination is not a 

unique solution and a subsequent MDS analysis on the same set of data and following the 

http://en.wikipedia.org/wiki/Multiple_correspondence_analysis
http://cran.r-project.org/web/packages/FactoMineR/index.html
http://factominer.free.fr/advanced-methods/multiple-factor-analysis.html
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same methodology will likely result in a somewhat different ordination. Third, MDS is not an 

eigenvalue-eigenvector technique like principal components analysis or correspondence 

analysis, that ordinates the data such that axis 1 explains the greatest amount of variance, axis 

2 explains the next greatest amount of variance, and so on. As a result, an MDS ordination 

can be rotated, inverted, or centered to any desired configuration. 

Unlike other ordination methods, MDS makes few assumptions about the nature of the 

data. For example, principal components analysis assumes linear relationships and reciprocal 

averaging assumes modal relationships. MDS makes neither of these assumptions, so is well 

suited for a wide variety of data. MDS also allows the use of any distance measure of the 

samples, unlike other methods, which specify particular measures, such as covariance or 

correlation in PCA or the implied chi-squared measure in detrended correspondence analysis. 

The method starts with a matrix of data consisting of n rows of samples and p columns 

of variables, From this symmetrical matrix of all pairwise distances among samples is 

calculated with an appropriate distance measure, such as Euclidean distance, Manhattan 

distance (city block distance), and Bray distance. The MDS ordination will be performed on 

this distance matrix. Next, a desired number of m dimensions is chosen for the ordination.  

Distances among samples in starting configuration are calculated, typically with a Euclidean 

metric. These distances are regressed against the original distance matrix and the predicted 

ordination distances for each pair of samples is calculated. A variety of regression methods 

can be used, including linear, polynomial, and non-parametric approaches.  In any case, the 

regression is fitted by least-squares. The goodness of fit of the regression is measured based 

on the sum of squared differences between ordination-based distances and the distances 

predicted by the regression. This goodness of fit is called stress and can be calculated in 

several ways, e.g. from equation 3 with one of the most common being Kruskal’s Stress 
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where dhi is the ordinated distance between samples h and i, and  d̂ is the distance predicted 

from the regression. This configuration is then improved by moving the positions of samples 

in ordination space by a small amount in the direction of steepest descent, the direction in 

which stress changes most rapidly. The ordination distance matrix is recalculated, the 

regression performed again and stress recalculated, and this entire procedure of nudging 
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samples and recalculating stress is repeated until some small specified tolerance value is 

achieved or until the procedure converges by failing to achieve any lower values of stress, 

which indicates that a minimum (perhaps local) has been found. 

 

A scree diagram (stress versus number of dimensions) can then be plotted, on which 

one can identify the point beyond which additional dimensions do not substantially lower the 

stress value. A second criterion for the appropriate number of dimensions is the 

interpretability of the ordination, that is, whether the results make sense. Stress increases both 

with the number of samples and with the number of variables.   

 

R has two main MDS functions available, isoMDS, which is part of the MASS library, 

and metaMDS, which is part of the vegan library. The metaMDS routine allows greater 

automation of the ordination process, so is usually the preferred method. The metaMDS 

function uses isoMDS in its calculations as well as several helper functions. The metaMDS 

routine also has the useful default behavior of following the ordination with a rotation via 

principal components analysis such that MDS axis 1 reflects the principal source of variation 

and so on, as is characteristic of eigenvalue methods.  

3 Overview of latent class and latent class regression models  

According to Linzer (2011) latent class analysis is a statistical technique for the analysis of 

multivariate categorical data. When observed data take the form of a series of categorical 

responses (as for example, in public opinion surveys, individual-level voting data, studies of 

inter-rater reliability, or consumer behavior and decision-making), it is often our interest to 

investigate sources of confounding between the observed variables, identify and characterize 

clusters of similar cases, and approximate the distribution of observations across many 

variables of interest. Latent class models are a useful tool for accomplishing these goals. The 

latent class model seeks to stratify the cross-classiffcation table of observed (manifest) 

variables by an unobserved (latent) categorical variable, that eliminates all confounding 

between the manifest variables. Responses to all of the manifest variables are assumed to be 

statistically independent. The model, in effect, probabilistically groups each observation into a 

latent class, which in turn produces expectations about how that observation will respond on 

each manifest variable. Although the model does not automatically determine the number of 

latent classes in a given data set, it does offer a variety of parsimony and goodness of fit 

statistics, that the we may use in order to make a theoretically and empirically assessment. 
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Because the unobserved latent variable is nominal (membership of a class), the latent class 

model is actually a type of finite mixture model. The component distributions in the mixture 

are cross-classiffcation tables of equal dimension to the observed table of manifest variables, 

and, following the assumption of conditional independence, the frequency in each cell of each 

component table is simply the product of the respective class-conditional marginal 

frequencies (the parameters estimated by the latent class model are the proportion of 

observations in each latent class, and the probabilities of observing each response to each 

manifest variable, conditional on latent class). A weighted sum of these component tables 

forms an approximation (or, density estimate) of the distribution of cases across the cells of 

the observed table. Observations with similar sets of responses on the manifest variables will 

tend to cluster within the same latent classes. An extension of this basic model permits the 

inclusion of covariates to predict latent class membership. Whereas in the basic model, every 

observation has the same probability of belonging to each latent class prior to observing the 

responses to the manifest variables, in the more general latent class regression model, these 

prior probabilities vary by individual as a function of some set of independent variables. 

 

poLCA is a software package for the estimation of latent class and latent class 

regression models for polytomous outcome variables (variables with more than two distinct 

categories), implemented in the R The basic latent class model is a finite mixture model, in 

which the component distributions are assumed to be multi-way cross-classiffcation tables 

with all variables mutually independent. The latent class regression model further enables us 

to estimate the effects of covariates on predicting latent class membership. poLCA uses 

expectation-maximization and Newton-Raphson algorithms to find maximum likelihood 

estimates of the model parameters. 

4 Latent class models  

According to Linzer (2011) the basic latent class model is a finite mixture model in which the 

component distributions are assumed to be multi-way cross-classification tables with all 

variables mutually independent. Suppose we observe J polytomous categorical variables (the 

manifest variables), each of which contains Kj possible outcomes, for individuals i = 1,...,N. 

The manifest variables may have different numbers of outcomes, hence the indexing by j. 

Denote as Yijk the observed values of the J manifest variables such that Yijk = 1 if respondent i 

gives the k-th response to the j-th variable, and Yijk = 0 otherwise, where j = 1,..., J and k = 

1,...,Kj . The latent class model approximates the observed joint distribution of the manifest 
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variables as the weighted sum of a finite number R of constituent cross-classification tables. 

Let πjrk denote the class-conditional probability, that an observation in class r = 1,...,R 

produces the k-th outcome on the j-th variable. Within each class, for each manifest variable, 

therefore 


jK

k
jrk

1

1 . Further denote as pr the R mixing proportions that provide the weights in 

the weighted sum of the component tables, with 
r

r
p 1 . The values of pr are also referred to 

as the prior probabilities of latent class membership, as they represent the unconditional 

probability that an individual will belong to each class before taking into account the 

responses Yijk provided on the manifest variables. The probability that an individual i in class r 

produces a particular set of J outcomes on the manifest variables, assuming conditional 

independence of the outcomes Y given class memberships, is the product 
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The probability density function across all classes is the weighted sum 
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The parameters estimated by the latent class model are pr and πjrk. Given estimates 
r

p̂ and 
jrk

̂  

of pr and πjrk, respectively, the posterior probability that each individual belongs to each class, 

conditional on the observed values of the manifest variables, can be calculated using Bayes' 

formula: 
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where  Rr
i

,...1 . Recall that the 
jrk

̂ are estimates of outcome probabilities conditional on 

class r. It is important to remain aware that the number of independent parameters estimated 

by the latent class model increases rapidly with R, J, and Kj . Given these values, the number 

of parameters is     
j

j
RKR 11 . If this number exceeds either the total number of 

observations, or one fewer than the total number of cells in the cross-classification table of the 

manifest variables, then the latent class model will be unidentified. poLCA estimates the 

latent class model by maximizing the log-likelihood function 
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with respect to pr and πjrk, using the expectation-maximization (EM) algorithm. This log-

likelihood function is identical in form to the standard finite mixture model log-likelihood. As 

with any finite mixture model, the EM algorithm is applicable because each individual's class 
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membership is unknown and may be treated as missing data. The EM algorithm proceeds 

iteratively. Begin with arbitrary initial values of 
r

p̂ and 
jrk

̂ , and label them old

r
p̂ and old

jrk
̂ . In 

the expectation step, calculate the missing class membership probabilities using Equation 6, 

substituting in old

r
p̂ and old

jrk
̂ .  In the maximization step, update the parameter estimates by 

maximizing the log-likelihood function given these posterior  
ii

YrP |ˆ  with 
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as the new prior probabilities and 
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as the new class-conditional outcome probabilities. In Equation 9, new

jr
̂   is the vector of length 

Kj of class-r conditional outcome probabilities for the j-th manifest variable; and Yij is the 

j
KN  matrix of observed outcomes Yijk on that variable. The algorithm repeats these steps, 

assigning the new to the old, until the overall log-likelihood reaches a maximum and ceases to 

increment beyond some arbitrarily small value. 

 

poLCA takes advantage of the iterative nature of the EM algorithm to make it possible 

to estimate the latent class model even when some of the observations on the manifest 

variables are missing. Although poLCA does offer the option to listwise delete observations 

with missing values before estimating the model, it is not necessary to do so. Instead, when 

determining the product in Equation 4 and the sum in the numerator of Equation 9, poLCA 

simply excludes from the calculation any manifest variables with missing observations. The 

priors are updated in Equation 6 using as many or as few manifest variables as are observed 

for each individual. Depending on the initial values chosen for old

r
p̂ and old

jrk
̂ , and the 

complexity of the latent class model being estimated, the EM algorithm may only find a local 

maximum of the log-likelihood function, rather than the desired global maximum. For this 

reason, it is always advisable to re-estimate a particular model a couple of times when using 

poLCA, in an attempt to find the global maximizer to be taken as the maximum likelihood 

solution. 

One of the benefits of latent class analysis, in contrast to other statistical techniques 

for clustered data, is the variety of tools available for assessing model fit and determining an 

appropriate number of latent classes R for a given data set. In some applications, the number 
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of latent classes will be selected for primarily theoretical reasons. In other cases, however, the 

analysis may be of a more exploratory nature, with the objective being to locate the best 

fitting or most parsimonious model. We may then begin by fitting a complete independence 

model with R = 1, and then iteratively increasing the number of latent classes by one until a 

suitable fit has been achieved. Adding an additional class to a latent class model will increase 

the fit of the model, but at the risk of fitting to noise, and at the expense of estimating a 

further   
j

j
K 11  model parameters. Parsimony criteria seek to strike a balance between 

over- and under-fitting the model to the data by penalizing the log-likelihood by a function of 

the number of parameters being estimated. The two most widely used parsimony measures are 

the Bayesian information criterion, or BIC and Akaike information criterion, or AIC. 

Preferred models are those that minimize values of the BIC and/or AIC. Let Λ represent the 

maximum log-likelihood of the model and Φ represent the total number of estimated 

parameters. Then, AIC = -2Λ+2Φ and BIC = -2Λ+ Φ lnN. poLCA calculates these parameters 

automatically when estimating the latent class model. The BIC will usually be more 

appropriate for basic latent class models because of their relative simplicity. Calculating 

Pearson's Χ
2
 goodness of fit and likelihood ratio chi-square (G

2
) statistics for the observed 

versus predicted cell counts is another method to help determine how well a particular model 

fits the data, for more details see Linzer (2011). Like the AIC and BIC, these statistics are 

outputted automatically after calling poLCA.  

5 Optimal scaling by Gifi methods 

The challenge with categorical variables is to find a suitable way to represent distances 

between variable categories and individuals in the factorial space. To overcome this problem, 

we can look for a non-linear transformation of each variable, whether it is nominal, ordinal, 

polynomial, or numerical with optimal scaling. This is well explained in Leeuw (2009), and 

an implementation is available in the corresponding R package homals. As extension to this 

transformation, having nonmetric variables, we can use dimensionalty reduction methods, e.g. 

nonlinear principal component analysis (NLPCA). The term nonlinear pertains to nonlinear 

transformations of the observed variables. In Gifi terminology, NLPCA can be defined as 

homogeneity analysis with restrictions on the quantification matrix. 

6 Fuzzy Clustering 

http://cran.r-project.org/web/packages/homals/index.html
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According to Oksanen (2010) we have so far worked with classiffcation methods, which 

implicitly assume, that there are distinct classes. The real situation is usually different. If there 

are classes, they are vague and have intermediate and untypical cases. With one word, they 

are fuzzy. Fuzzy classiffcation means, that each observation has a certain probability of 

belonging to a certain class. In the crisp case, it has probability 1 of belonging to a certain 

class, and probability 0 of belonging to any other class. In a fuzzy case, it has probability < 1 

for the best class, and probabilities > 0 for several other classes. Fuzzy classiffcation is similar 

to K-means clustering in finding the optimal classiffcation for a given number of classes, but 

the produced classiffcation is fuzzy: the result is a probability profile of class membership. 

The fuzzy clustering is provided by function fanny (equation 10) in package cluster. 

Requested membership probabilities we get from the minimalization of the function 
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where the values of u are membership probabilities and values of d are Euclidean distances 

among the objects. It is difficult to show the fuzzy results graphically, but it is possible to use 

stars function (with many optional parameters) to show the probability profile, and it draws a 

convex hull of the crisp classification. The size of the sector shows the probability of the class 

membership and in clear cases one of the segments is dominant. 

Conclusion 

This study was aimed to the overview of data dimensionality reduction method especially for 

categorical (ordinal) data. Some advantages and difficulties of the methods were presented, in 

future research these methods will be apllied on real dataset and comparison of the results will 

be performed. 
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