SOME FUNCTIONS IN ECONOMY FROM MATHEMATICAL POINT OF VIEW

(Application of Cartan's moving frame method.)

Miloš Kaňka, Eva Kaňková

Abstract

The aim of this article is to give basic geometrical characteristic of some utility functions used in economics. We are going to study these functions as regular surfaces in $R³$. Applying the method of Cartan moving frame we obtain geometrical description of production function

$$
f(u, v) = A \cdot u^{\alpha} \cdot v^{\beta}
$$
, where $A = 1$, $\alpha = 1$ or $\alpha = 2$, $\beta = 1$,

Key words: orthonormal frame, tangent space, Gaussian curvature, Mean curvature, Maurer-Cartan equations, Cartan's lemma.

JEL Code: C00

Introduction

Let us suppose that for every point $p \in M \subset R^3$ exist an open set $U \subset R^2$, an open set $V \subset R^3$, $p \in V$, and a homeomorphism $x: U \to V \cap M$. A subset $M \subset R^3$ is called a twodimensional surface in R^3 . Let $x(U) \subset V \cap M \subset R^3$ be a neighbourhood of $p \in M$ such that the restriction $x | U$ is an embedding into $x(U) = V \cap M$ and that it is possible to choose in $x(U)$ an orthonormal moving frame $\{E_1, E_2, E_3\}$ in such a way that E_1 , E_2 are tangent to $x(U)$ and E_3 is a non-vanishing normal to $x(U)$. We first discuss the Cartan structural equations for a two-dimensional surface in R^3 .

1. Basic equations

Differentiating a map $x(u, v)$ we obtain

$$
dx = x_u \, du + x_v \, dv \,,
$$

where x_u , x_v are tangent vector fields. Let us denote

$$
n(u, v) = \frac{x_u \times x_v}{|x_u \times x_v|}
$$

the unit normal vector field. With respect to the orthonormal moving frame $\{E_1, E_2, E_3\}$ we have

$$
dx = E_1 \theta_1 + E_2 \theta_2 + E_3 \theta_3.
$$

where $\theta_i(E_j) = \delta_{ij}$. Since x_u and x_v are tangent to $x(U)$ we have $dx \cdot E_3 = 0$ which implies $\theta_3 = 0$ and

$$
dx = E_1 \theta_1 + E_2 \theta_2.
$$

Each vector E_i : $U \subset R^3 \to R^3$ is a differentiable map and the differential

$$
dE_i: R^3 \to R^3
$$

is a linear map. So we may write (using Einstein's notation)

$$
dE_i = \omega_{ij} E_j
$$

where ω_{ij} are linear forms on R^3 and since E_i are differentiable ω_{ij} are nine differentiable forms. So we have

$$
dE_1 = \omega_{11}E_1 + \omega_{12}E_2 + \omega_{13}E_3
$$

\n
$$
dE_1 = \omega_{21}E_1 + \omega_{22}E_2 + \omega_{23}E_3
$$

\n
$$
dE_3 = \omega_{31}E_1 + \omega_{32}E_2 + \omega_{33}E_3
$$
\n(1)

Differentiating equation $E_i \cdot E_j = \delta_{ij}$ we obtain

$$
dE_iE_j + E_i dE_j = \omega_{ij} + \omega_{ji} = 0.
$$

Forms ω_{ij} are antisymmetric

$$
\omega_{ii} = 0 \quad , \quad \omega_{ij} = -\omega_{ji} \tag{2}
$$

From (1) and (2) we have

$$
dE_1 = \omega_{12} E_2 + \omega_{13} E_3,
$$

\n
$$
dE_2 = -\omega_{12} E_1 + \omega_{23} E_3,
$$

\n
$$
dE_3 = -\omega_{13} E_1 - \omega_{23} E_2.
$$
\n(3)

Forms dx and dE_i have vanishing exterior derivatives

$$
0 = d^{2}x = dE_{1} \wedge \theta_{1} + E_{1}d\theta_{1} + dE_{2} \wedge \theta_{2} + E_{2}d\theta_{2}.
$$
 (4)

Substituting (3) into (4) we obtain

$$
(\omega_{12}E_2 + \omega_{13}E_3) \wedge \theta_1 + E_1 d\theta_1 + (\omega_{21}E_1 + \omega_{23}E_3) \wedge \theta_2 + E_2 d\theta_2 = 0
$$
\n(5)

From (5) there immediately follows

$$
(d\theta_1 + \omega_{21} \wedge \theta_2)E_1 + (d\theta_2 + \omega_{12} \wedge \theta_1)E_2 + (\omega_{13} \wedge \theta_1 + \omega_{23} \wedge \theta_2)E_3 = 0.
$$
 (6)

The linear independence of vectors E_1, E_2, E_3 and equation (6) gives the following equations:

$$
d\theta_1 = \omega_{12} \wedge \theta_2, \tag{7}
$$

$$
d\theta_1 = \omega_{12} \wedge \theta_2, \tag{7}
$$

\n
$$
d\theta_2 = \omega_{21} \wedge \theta_1, \tag{8}
$$

\n
$$
0 = \omega_{13} \wedge \theta_1 + \omega_{23} \wedge \theta_2.
$$

\n
$$
(9)
$$

$$
0 = \omega_{13} \wedge \theta_1 + \omega_{23} \wedge \theta_2. \tag{9}
$$

Differentiating (3) gives:

$$
0 = d^2 E_1 = d\omega_{12} E_2 - \omega_{12} \wedge dE_2 + d\omega_{13} E_3 - \omega_{13} \wedge dE_3,
$$

\n
$$
d\omega_{12} E_2 - \omega_{12} \wedge (\omega_{21} E_1 + \omega_{23} E_3) + d\omega_{13} E_3 - \omega_{13} \wedge (\omega_{31} E_1 + \omega_{32} E_2) = 0,
$$

\n
$$
(d\omega_{12} - \omega_{13} \wedge \omega_{32}) E_2 + (d\omega_{13} - \omega_{12} \wedge \omega_{23}) E_3 = 0.
$$
 (10)

From (10) we have

International Days of Statistics and Economics, Prague, September 22-23, 2011

$$
d\omega_{12} = \omega_{13} \wedge \omega_{32} \tag{11}
$$

$$
d\omega_{13} = \omega_{12} \wedge \omega_{23} \tag{12}
$$

Analogically:

$$
d^2E_2 = d\omega_{21}E_1 - \omega_{21} \wedge dE_1 + d\omega_{23}E_3 - \omega_{23} \wedge dE_3 = 0.
$$

\n
$$
d\omega_{21}E_1 - \omega_{21} \wedge (\omega_{12}E_2 + \omega_{13}E_3) + d\omega_{23}E_3 - \omega_{23} \wedge (\omega_{31}E_1 + \omega_{32}E_2) = 0.
$$

\n
$$
(d\omega_{23} - \omega_{21} \wedge \omega_{13})E_3 + (d\omega_{21} - \omega_{23} \wedge \omega_{31})E_1 = 0
$$
\n(13)

From (13) we have

$$
d\omega_{23} = \omega_{21} \wedge \omega_{13}.\tag{14}
$$

Equations (7), (8), (9), (11), (12) and (14) are called Maurer-Cartan structural equations. From equation (9) and Cartan's lemma we have

$$
\omega_{13} = \alpha_{11}\theta_1 + \alpha_{12}\theta_2 \qquad , \qquad \omega_{23} = \alpha_{12}\theta_1 + \alpha_{22}\theta_2. \tag{15}
$$

From (15) and (11) we have

$$
d\omega_{12} = \omega_{13} \wedge \omega_{32} = -\omega_{13} \wedge \omega_{23} = -(\alpha_{11}\theta_1 + \alpha_{12}\theta_2) \wedge (\alpha_{12}\theta_1 + \alpha_{22}\theta_2).
$$
 (16)

Equation (16) gives

$$
d\omega_{12} = -(\alpha_{11}\alpha_{22} - \alpha_{12}^2)\theta_1 \wedge \theta_2 = -K\theta_1 \wedge \theta_2,
$$

where $K = (\alpha_{11}\alpha_{22} - \alpha_{12}^2)$ is the Gaussian curvature.

Differentiating the equation $E_3 \cdot E_3 = 1$ we obtain $dE_3 \cdot E_3 = 0$, which means that dE_3 is a tangent vector, i.e. $dE_3 \in T_p(M)$. The mapping

$$
W(\alpha x_{u} + \beta x_{v}) = -\alpha \frac{\partial E_{3}}{\partial u} - \beta \frac{\partial E_{3}}{\partial v}
$$
 (17)

is a linear mapping $W: T_p(M) \to T_p(M)$.

2. Example 1

Let $x(u, v) = (u, v, u \cdot v)$ be the parametrized utility surface in R^3 . Orthogonal frame is

$$
x_u = (1, 0, v),
$$
 $x_v = (0, 1, u),$ $n = (-v, -u, 1).$

Orthonormal frame is

$$
E_1 = \frac{1}{\sqrt{1 + v^2}} (1, 0, v),
$$

\n
$$
E_2 = \frac{1}{\sqrt{1 + v^2} \cdot \sqrt{1 + u^2 + v^2}} (-uv, 1 + v^2, u),
$$

\n
$$
E_3 = \frac{1}{\sqrt{1 + u^2 + v^2}} (-v, -u, 1).
$$

The differential form $dx = x_u du + x_v dv$ gives

$$
\theta_i = E_i dx = E_i x_u du + E_i x_v dv, \quad \text{for} \quad i = 1, 2.
$$

We have

$$
\theta_1 = \sqrt{1 + v^2} \, du + \frac{uv}{\sqrt{1 + v^2}} \, dv,\tag{18}
$$

$$
\theta_2 = \frac{\sqrt{1+u^2 + v^2}}{\sqrt{1+v^2}} dv.
$$
\n(19)

Further we have

$$
dE_1 = \left(\frac{-v}{\left(1 + v^2\right)^{\frac{3}{2}}}, 0, \frac{1}{\left(1 + v^2\right)^{\frac{3}{2}}}\right)dv,
$$

$$
\omega_{12} = dE_1 \cdot E_2 = \frac{u}{\left(1 + v^2\right)\sqrt{1 + u^2 + v^2}}dv.
$$

Analogically we have

$$
\omega_{13} = dE_1 \cdot E_3 = \frac{1}{\sqrt{1 + v^2} \sqrt{1 + u^2 + v^2}} dv.
$$

And further

$$
\partial_u E_2 = \frac{\sqrt{1 + v^2}}{\left(1 + u^2 + v^2\right)^{\frac{3}{2}}} \cdot \left(-v, -u, 1\right),\tag{20}
$$

$$
\partial_{\nu} E_2 = \frac{1}{\left(1 + \nu^2\right)^{\frac{3}{2}} \cdot \left(1 + u^2 + \nu^2\right)^{\frac{3}{2}}} \left(E_{2\nu}^1, E_{2\nu}^2, E_{2\nu}^3\right),\tag{21}
$$

where

$$
E_{2v}^{1} = -u(1+v^{2})(1+u^{2})+uv^{2}(1+u^{2}+v^{2}),
$$

\n
$$
E_{2v}^{2} = u^{2}v(1+v^{2}),
$$

\n
$$
E_{2v}^{3} = -uv[(1+u^{2}+v^{2})+(1+v^{2})].
$$

From (20) and (21) follows

$$
\partial_u E_2 \cdot E_3 = \frac{\sqrt{1 + v^2}}{1 + u^2 + v^2} , \quad \partial_v E_2 \cdot E_3 = \frac{-uv}{\sqrt{1 + v^2} (1 + u^2 + v^2)} ,
$$

and

$$
\omega_{23} = dE_2 \cdot E_3 = \frac{\sqrt{1 + v^2}}{1 + u^2 + v^2} du - \frac{uv}{\sqrt{1 + v^2} (1 + u^2 + v^2)} dv.
$$

Summarizing the previous results, we have

$$
\omega_{12} = -\omega_{21} = \frac{u dv}{(1 + v^2)\sqrt{1 + u^2 + v^2}},
$$

\n
$$
\omega_{13} = -\omega_{31} = \frac{dv}{\sqrt{1 + v^2}\sqrt{1 + u^2 + v^2}},
$$

\n
$$
\omega_{23} = -\omega_{32} = \frac{\sqrt{1 + v^2}}{1 + u^2 + v^2} du - \frac{uv}{\sqrt{1 + v^2}\left(1 + u^2 + v^2\right)} dv,
$$

\n
$$
\theta_1 = \sqrt{1 + v^2} du + \frac{uv}{\sqrt{1 + v^2}} dv,
$$

\n
$$
\theta_2 = \frac{\sqrt{1 + u^2 + v^2}}{\sqrt{1 + v^2}} dv.
$$

From equations (20) and (21) follows

$$
d\theta_1 = 0 \quad , \quad d\theta_2 = \frac{u}{\sqrt{1 + v^2} \sqrt{1 + u^2 + v^2}} du \wedge dv.
$$

And

$$
\theta_1 \wedge \theta_2 = \sqrt{1 + u^2 + v^2} du \wedge dv. \tag{22}
$$

From (11) we have

$$
d\omega_{12} = \omega_{13} \wedge \omega_{32} = \frac{1}{\left(1 + u^2 + v^2\right)^{\frac{3}{2}}} du \wedge dv.
$$

Thanks to (22) we have

$$
du \wedge dv = \frac{1}{\sqrt{1+u^2+v^2}} \theta_1 \wedge \theta_2
$$

and

$$
d\omega_{12} = \frac{1}{\left(1 + u^2 + v^2\right)^2} \theta_1 \wedge \theta_2.
$$
 (23)

From (23) immediately follows that

$$
K = -\frac{1}{\left(1 + u^2 + v^2\right)^2},\tag{24}
$$

which means that every point of studied surface is hyperbolical. The equation (17) gives

$$
W(x_u) = -\partial_u E_3 \quad \text{and} \quad W(x_v) = -\partial_v E_3,
$$

where

$$
\partial_u E_3 = \frac{1}{\left(1+u^2+v^2\right)^{\frac{3}{2}}}\left(uv, -v^2-1, -u\right) , \quad \partial_v E_3 = \frac{1}{\left(1+u^2+v^2\right)^{\frac{3}{2}}}\left(1-u^2, uv, -v\right)
$$

From the fact $W: T_p(M) \to T_p(M)$ follows

$$
\partial_u E_3 = \alpha_{11} x_u + \alpha_{12} x_v , \quad \partial_v E_3 = \alpha_{21} x_u + \alpha_{22} x_v . \tag{25}
$$

After a short calculation we obtain

$$
\alpha_{11} = \frac{uv}{\left(1+u^2+v^2\right)^{\frac{3}{2}}}, \quad \alpha_{12} = -\frac{1+v^2}{\left(1+u^2+v^2\right)^{\frac{3}{2}}},
$$

$$
\alpha_{21} = -\frac{1+u^2}{\left(1+u^2+v^2\right)^{\frac{3}{2}}}, \quad \alpha_{22} = \frac{uv}{\left(1+u^2+v^2\right)^{\frac{3}{2}}}.
$$

From equations (25) follows that the mapping *W* can be described by the matrix

$$
W = \frac{1}{\left(1+u^2+v^2\right)^{\frac{3}{2}}} \begin{pmatrix} -uv & 1+v^2\\ 1+u^2 & -uv \end{pmatrix}.
$$

Determinant

$$
\det W = K = \frac{1}{\left(1 + u^2 + v^2\right)^3} \det \begin{pmatrix} -uv & 1 + v^2 \\ 1 + u^2 & -uv \end{pmatrix} = -\frac{1}{\left(1 + u^2 + v^2\right)^2} ,
$$

as was given in (24) and the formula for mean curvature

$$
H = \frac{1}{2} Tr W = -\frac{uv}{\left(1 + u^2 + v^2\right)^3}.
$$

3. Example 2

Let $x(u, v) = (u, v, u^2 v)$ be a parameterized utility function. Orthogonal frame is

$$
x_u = (1, 0, 2uv)
$$

\n
$$
x_v = (0, 1, u^2)
$$

\n
$$
n = (-2uv, -u^2, 1).
$$

Orthonormal frame is

$$
E_1 = \frac{1}{\sqrt{1 + 4u^2v^2}} (1, 0, 2uv),
$$

\n
$$
E_2 = \frac{1}{\sqrt{1 + 4u^2v^2} \cdot \sqrt{1 + 4u^2v^2 + u^4}} (-2u^3v, 1 + 4u^2v^2, u^2),
$$

\n
$$
E_3 = \frac{1}{\sqrt{1 + 4u^2v^2 + u^4}} (-2uv, -u^2, 1).
$$
\n(26)

The forms θ_1 and θ_2 have the form

$$
\theta_1 = \sqrt{1 + 4u^2v^2}du + \frac{2u^3v}{\sqrt{1 + 4u^2v^2}}dv, \ \theta_2 = \frac{\sqrt{1 + 4u^2v^2 + u^4}}{\sqrt{1 + 4u^2v^2}}dv. \tag{27}
$$

Further we have

$$
dE_1 = \partial_u E_1 du + \partial_v E_1 dv = \frac{1}{(1 + 4u^2v^2)^{3/2}} [(-4uv^2, 0, 2v) du + (-4u^2v, 0, 2u) dv].
$$

After a short calculation we obtain

$$
\omega_{12} = dE_1 \cdot E_2 = \frac{1}{(1 + 4u^2v^2)\sqrt{1 + 4u^2v^2 + u^4}} (2u^2v du + 2u^3 dv).
$$

Analogically

$$
\omega_{13} = dE_1 \cdot E_3 = \frac{1}{\sqrt{1 + 4u^2v^2} \sqrt{1 + 4u^2v^2 + u^4}} (2v \, du + 2u \, dv).
$$

From (26) follows

$$
dE_3 = (\partial_u E_3) du + (\partial_v E_3) dv.
$$

After a short calculation we obtain

$$
d\omega_{32} = dE_3 \cdot E_2 = \frac{1}{\sqrt{1+4u^2v^2}(1+4u^2v^2+u^4)} [(-4u^3v^2-2u) du + 4u^4v dv].
$$

Summarizing the previous results we obtain

$$
\omega_{12} = -\omega_{21} = \frac{1}{\left(1 + 4u^2v^2\right)\sqrt{1 + 4u^2v^2 + u^4}} \left(2u^2v\,du + 2u^3\,dv\right),
$$
\n
$$
\omega_{13} = -\omega_{31} = \frac{1}{\sqrt{1 + 4u^2v^2}\sqrt{1 + 4u^2v^2 + u^4}} \left(2v\,du + 2u\,dv\right),
$$
\n
$$
\omega_{23} = -\omega_{32} = \frac{1}{\sqrt{1 + 4u^2v^2}\left(1 + 4u^2v^2 + u^4\right)} \left[\left(4u^3v^2 + 2u\right)du - 4u^4v\,dv\right].
$$

From equations (16) and (27) we obtain

$$
d\omega_{12} = \omega_{13} \wedge \omega_{32} = \frac{4u^2}{\left(1 + 4u^2v^2 + u^4\right)^{\frac{3}{2}}} du \wedge dv = \frac{4u^2}{\left(1 + 4u^2v^2 + u^4\right)^2} \theta_1 \wedge \theta_2.
$$

from which follows: Gaussian curvature has the form $(1+4u^2v^2+u^4)^2$. $(1 + 4)$ 4 $2, 2, 4$ 2 $u^2v^2 + u$ $K=-\frac{4u}{\sqrt{2\pi}}$ $+4u^{2}v^{2} +$ $=$ $-$

Conclusion

Two economical examples served as an illustration of Maurer-Cartan equations and we reached the following results:

1. The Gaussian and mean curvatures of the first surface are

$$
K=-\frac{1}{\left(1+u^2+v^2\right)^2}, \quad H=\frac{1}{2}Tr\,W=-\frac{uv}{\left(1+u^2+v^2\right)^{\frac{3}{2}}}.
$$

2. The Gaussian curvature of the second surface is $(1+4u^2v^2+u^4)^2$. $(1 + 4)$ 4 2^{2} $(4)^2$ 2 $u^2v^2 + u$ $K = -\frac{4u}{\sqrt{2\pi}}$ $+4u^{2}v^{2} +$ $=$ $-$

References

- Bureš, Jarolím, and Kaňka, Miloš. "Some Conditions for a Surface in $E⁴$ to be a Part of the Sphere 2 *S* ." *Mathematica Bohemica* 4 1994: 367-371.
- Cartan, Élie. *Euvres complètes-Partie I Vol. 2.* Paris: Gauthier-Villars, 1952.
- Cartan, Élie. *Euvres complètes-Partie II. Vol. 1.* Paris: Gauthier-Villars, 1953.
- Cartan, Élie. *Euvres complètes-Partie II. Vol. 2.* Paris: Gauthier-Villars, 1953.
- Cartan, Élie. *Euvres complètes-Partie III. Vol. 1.* Paris: Gauthier-Villars, 1955.
- Cartan, Élie. *Euvres complètes-Partie III. Vol. 2.* Paris: Gauthier-Villars, 1955.
- Kaňka, Miloš. "Example of Basic Structure Equations of Riemannian Manifolds." *Mundus Symbolicus* 3 1995: 57-62.
- Kobayashi, Shoshichi, and Nomizu, Katsumi. *Foundations of Differential Geometry.* New York: Wiley (Inter-science), 1963.
- Nomizu, Katsumi. *Lie Groups and Differential Geometry.* Tokyo: The Mathematical Society of Japan, 1956.
- Sternberg, Sholomo. *Lectures on Differential Geometry.* Englewood Cliffs, N.J.: Prentice-Hall, 1964.

Contact

Miloš Kaňka

International Days of Statistics and Economics, Prague, September 22-23, 2011

University of Economics, Faculty of Informatics and Statistics, Department of Mathematics, Winston Churchill square 4, Prague 3, Czech Republic kanka@vse.cz

Eva Kaňková

University of Economics, Faculty of Business Administration, Department of Microeconomics, Winston Churchill square 4, Prague 3, Czech Republic kankova@vse.cz